Advertisement

The genetics and diagnosis of pediatric neurocutaneous disorders: Neurofibromatosis and tuberous sclerosis complex

      Abstract

      Neurofibromatosis (NF) and tuberous sclerosis complex (TSC) are the two most common neurocutaneous disorders, both transmitted as autosomal dominant or, in the case of NF, also as a mosaic condition. The causative genetic mutations in these neurocutaneous disorders can lead to benign skin changes or uninhibited growth and proliferation in multiple organ systems due to the loss of tumor suppression in mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. Common clinical features in NF include pigmented lesions, known as café au lait patches, neurofibromas, intertriginous freckles (Crowe's sign), and benign fibrous growths, such as hamartomas in multiple organ systems. Common clinical features in TSC include hypopigmented macules, known as ash leaf spots, in addition to neurologic sequelae, such as autism, seizures, and developmental delays. Advances in genetic sequencing technologies have allowed an exponential expansion in the understanding of NF and TSC.
      Consensus criteria have been established for both diagnoses that can be confirmed in most cases through gene testing. Once diagnosed, the clinical and diagnostic value of disease-specific surveillance include early identification of benign and malignant tumors. Genetic counseling is important for informed reproductive decision-making for patients and at-risk family members. The improvement in understanding of pathways of pathogenic disease development and oncogenesis in both conditions have produced a new series of therapeutic options that can be used to control seizures and tumor growth. Tremendous advances in life expectancy and quality of life are now a reality due to early introduction of seizure control and novel medications. While we lack cures, early institution of interventions, such as seizure control in tuberous sclerosis, appears to be disease-modifying and holds immense promise to offer patients better lives.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lyczkowski DA
        • Conant KD
        • Pulsifer MB
        • Jarrett DY
        • Grant PE
        • Kwiatkowski DJ
        • Thiele EA.
        Intrafamilial phenotypic variability in tuberous sclerosis complex.
        J Child Neurol. 2007; 22: 1348-1355
        • Sarnat HB
        • Flores-Sarnat L.
        Embryology of the neural crest: its inductive role in the neurocutaneous syndromes.
        J Child Neurol. 2005; 20: 637-643
        • Osborn JP
        • Fryer A
        • Webb D.
        Epidemiology of tuberous sclerosis.
        Ann NY Acad Sci. 1991; 615: 125-127
        • Huson SM
        • Harper PS
        • Compston DAS.
        Von recklinghausen neurofibromatosis: a clinical and population study in south-east Wales.
        Brain. 1988; 111: 1355-1381
        • Narod SA
        • Lenoir GM
        • Stiller C.
        An estimate of the heritable fraction of childhood cancer.
        Br J Cancer. 1991; 63: 993-999
        • O'Callaghan FJK
        • Shiell AW
        • Osborne JP
        • Martyn CN.
        Prevalence of tuberous sclerosis estimated by capture-recapture analysis.
        Lancet. 1998; 351: 1490
        • Korf BR
        • Bebin EM.
        Neurocutaneous disorders in children.
        Pediatr Rev. 2017; 38: 119-128
        • Rosser T.
        Neurocutaneous disorders.
        Contin Lifelong Learn Neurol. 2018; 24: 96-129
        • Figueiredo ACPCT
        • Mata-Machado N
        • McCoyd M
        • Biller J.
        Neurocutaneous disorders for the practicing neurologist: a focused review.
        Curr Neurol Neurosci Rep. 2016; 16: 1-17
        • Smalley SL
        • Burger F
        • Smith M.
        Phenotypic variation of tuberous sclerosis in a single extended kindred.
        J Med Genet. 1994; 31: 761-765
        • Evans DG
        • Huson SM
        • Donnai D
        • et al.
        A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity.
        J Med Genet. 1992; 29: 841-846
        • Huson SM
        • Compston DAS
        • Clark P
        • Harper PS.
        A genetic study of von Recklinghausen neurofibromatosis in south east Wales. I. Prevalence, fitness, mutation rate, and effect of parental transmission on severity.
        J Med Genet. 1989; 26: 704-711
        • Antinheimo J
        • Sankila R
        • Carpén O
        • Pukkala E
        • Sainio M
        • Jääskeläinen J.
        Population-based analysis of sporadic and type 2 neurofibromatosis-associated meningiomas and schwannomas.
        Neurology. 2000; 54: 71-76
        • Evans DG
        • Bowers NL
        • Tobi S
        • et al.
        Schwannomatosis: a genetic and epidemiological study.
        J Neurol Neurosurg Psychiatry. 2018; 89: 1215-1219
        • Ardern-Holmes S
        • Fisher G
        • North K.
        Neurofibromatosis type 2: presentation, major complications, and management, with a focus on the pediatric age group.
        J Child Neurol. 2017; 32: 9-22
        • Rouleau GA
        • Wertelecki W
        • Haines JL
        • et al.
        Genetic linkage of bilateral acoustic neurofibromatosis to a DNA marker on chromosome 22.
        Nature. 1987; 329: 246-248
        • Hulsebos TJM
        • Kenter SB
        • Jakobs ME
        • Baas F
        • Chong B
        • Delatycki MB.
        SMARCB1/INI1 maternal germ line mosaicism in schwannomatosis.
        Clin Genet. 2010; 77: 86-91
        • Hennig A
        • Markwart R
        • Wolff K
        • et al.
        Feedback activation of neurofibromin terminates growth factor-induced Ras activation.
        Cell Commun Signal. 2016; 14: 5
        • Smithson LJ
        • Anastasaki C
        • Chen R
        • Toonene JA
        • Williams SB
        • Gutmann DH.
        Contextual signaling in cancer.
        Semin Cell Devel Bio. 2016; 58: 118-126
        • Lee JY
        • Kim H
        • Ryu CH
        • et al.
        Merlin, a tumor suppressor, interacts with transactivation-responsive RNA-binding protein and inhibits its oncogenic activity.
        J Biol Chem. 2004; 279: 30265-30273
        • Rauen KA
        • Alsaegh A
        • Ben-Schachar S
        • et al.
        First International Conference on RASopathies and Neurofibromatoses in Asia: identification and advances of new therapeutics.
        Am J Med Genet A. 2019; 179: 1091-1097
        • Piotrowski A
        • Xie J
        • Liu YF
        • et al.
        Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas.
        Nat Genet. 2014; 46: 182-187
        • Merker VL
        • Esparza S
        • Smith MJ
        • Stemmer-Rachamimov A
        • Plotkin SR.
        Clinical features of schwannomatosis: a retrospective analysis of 87 patients.
        oncologist. 2012; 17: 1317-1322
        • Selvanathan SK.
        • Shenton A
        • Ferner R
        • et al.
        Further genotype – phenotype correlations in neurofibromatosis 2.
        Clin Genet. 2010; 77: 163-170
        • Statham DJ
        • Heath AC
        • Madden PA
        Suicidal behaviour: an epidemiological and genetic study.
        Psychol Med. 1998; 28: 839-855
        • Ardern-Holmes SL
        • North KN.
        Therapeutics for childhood neurofibromatosis type 1 and type 2.
        Curr Treat Options Neurol. 2011; 13: 529-543
      1. Friedman JM. Neurofibromatosis 1. Available at: https://www.ncbi.nlm.nih.gov/sites/books/NBK1109/. Accessed 06/05/2020.

        • Terzi YK
        • Oguzkan-Balci S
        • Anlar B
        • Aysun S
        • Guran S
        • Ayter S.
        Reproductive decisions after prenatal diagnosis in neurofibromatosis type 1: importance of genetic counseling.
        Genet Couns. 2009; 20: 195-202
        • Spits C
        • DeRycke M
        • Van Ranst N
        • et al.
        Preimplantation genetic diagnosis for neurofibromatosis type 1.
        Mol Hum Reprod. 2005; 11: 381-387
        • Wu-Chou YH
        • Hung T-C
        • Lin Y-T
        • et al.
        Genetic diagnosis of neurofibromatosis type 1: targeted next- generation sequencing with multiple ligation-dependent probe amplification analysis.
        J Biomed Sci. 2018; 25: 1-10
        • Bourn D
        • Carter SA
        • Evans DG
        • Goodship J
        • Coakhan H
        • Strachan T.
        A mutation in the neurofibromatosis type 2 tumor-suppressor gene, giving rise to widely different clinical phenotypes in two unrelated individuals.
        Am J Hum Genet. 1994; 55: 69-73
        • Evans DG
        • Bowers N
        • Huson SM
        • Wallace A.
        Mutation type and position varies between mosaic and inherited NF2 and correlates with disease severity.
        Clin Genet. 2013; 83: 594-595
        • Evans DG
        • Raymond FL
        • Barwell JG
        • Halliday D.
        Genetic testing and screening of individuals at risk of NF2.
        Clin Genet. 2012; 82: 416-424
        • Ahronowitz I
        • Xin W
        • Kiely R
        • Sims K
        • MacCollin M
        • Nunes FP.
        Mutational spectrum of the NF2 gene: a meta-analysis of 12 years of research and diagnostic laboratory findings.
        Human Mutation. 2007; 28: 1-12
        • Bai RY
        • Espositio D
        • Tam AJ
        • et al.
        Feasibility of using NF1-GRD and AAV for gene replacement therapy in NF1-associated tumors.
        Gene Ther. 2019; 26: 277-286
        • Stewart DR
        • Korf BR
        • Nathanson KL
        • Stevenson DA
        • Yohay K.
        Care of adults with neurofibromatosis type 1: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG).
        Genet Med. 2018; 20: 671-682
        • Karaconji T
        • Whist E
        • Jamieson RV
        • Flaherty MP
        • Grigg JRB.
        Neurofibromatosis type 1: review and update on emerging therapies.
        Asia Pac J Ophthalmol (Phila). 2019; 8: 62-72
        • Vaassen P
        • Dürr N
        • Röhrig A
        • Willing R
        • Rosenbaum T.
        Trametinib induces neurofibroma shrinkage and enables surgery.
        Neuropediatr. 2019; 50: 300-303
        • Suarez-Kelly LP
        • Yu L
        • Kline D
        • Schneider EB
        • Agnese DM
        • Carson WE.
        Increased breast cancer risk in women with neurofibromatosis type 1: a meta-analysis and systematic review of the literature.
        Hered Cancer Clin Pract. 2019; 17: 12
      2. Neurofibromatosis.
        Natl Inst Health Consens Dev Conf Consens Statement. 1987; 6: 1-7
        • Kehrer-Sawatzki H.
        Neurofibromatois type 1 without neurofibromas: genotype-phenotype correlations in NF1.
        Hum Mutat. 2015; 36: 5
        • Brems H
        • Chmara M
        • Sahbatou M
        • et al.
        Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype.
        Nat Genet. 2007; 39: 1120-1126
        • Rojnueangnit K
        • Xie J
        • Gomes A
        • et al.
        High incidence of noonan syndrome features including short stature and pulmonic stenosis in patients carrying nf1 missense mutations affecting p.arg1809: genotype-phenotype correlation.
        Hum Mutat. 2015; 26: 1052-1063
        • Northrup H
        • Kwirakowski DJ
        • Roach ES
        • et al.
        Evidence for genetic heterogeneity in tuberous sclerosis: one locus on chromosome 9 and at least one locus elsewhere.
        Am J Hum Genet. 1992; 51: 709-720
      3. The European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16.
        Cell. 1993; 75: 1305-1315
        • Northrup H
        • Wheless JW
        • Bertin TK
        • Lewis RA.
        Variability of expression in tuberous sclerosis.
        J Med Genet. 1993; 30: 41-43
        • Sampson J
        • Harris P.
        The molecular genetics of tuberous sclerosis.
        Hum Mol Genet. 1994; 3: 1477-1480
        • Xu L
        • Sterner C
        • Maheshkwar MM
        • et al.
        Alternative splicing of the tuberous sclerosis 2 (TSC2) gene in human and mouse tissues.
        Genomics. 1995; 27: 475-480
        • Au KS
        • Williams AT
        • Roach ES
        Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States.
        Genet Med. 2007; 9: 88-100
        • Dabora SL
        • Jozwiak S
        • Franz DN
        • et al.
        Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs.
        Am J Hum Genet. 2002; 68: 64-80
        • Sampson JR
        • Scahill SJ
        • Stephenson JBP
        • Mann L
        • Connor JM.
        Genetic aspects of tuberous sclerosis in the west of Scotland.
        J Med Genet. 1989; 26: 28-31
        • van Slegtenhorst M
        • de Hoogt R
        • Hermans C
        • et al.
        Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34.
        Science. 1997; 80: 805-808
        • Madigan JP
        • Hou F
        • Ye L
        • et al.
        The tuberous sclerosis complex subunit TBC1D7 is stabilized by Akt phosphorylation-mediated 14-3-3 binding.
        J Biol Chem. 2018; 293: 16142-16159
        • Qin J
        • Wang Z
        • Hoogeveen-Westerveld M
        • et al.
        Structural basis of the interaction between tuberous sclerosis complex 1 (TSC1) and tre2-bub2-cdc16 domain family member 7 (TBC1D7).
        J Biol Chem. 2016; 291: 8591-8601
        • Tee AR
        • Fingar DC
        • Manning BD
        • Kwiatkowski DJ
        • Cantley LC
        • Blenis J.
        Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.
        Proc Natl Acad Sci. 2002; 99: 13571-13576
        • Knudson AG.
        Mutation and cancer: statistical study of retinoblastoma.
        Proc Natl Acad Sci USA. 1971; 68: 820-823
        • Han JM
        • Sahin M.
        TSC1/TSC2 signaling in the CNS.
        FEBS Lett. 2011; 585: 973-980
        • Salussolia CL
        • Klonowska K
        • Kwiatkowski DJ
        • Sahin M.
        Genetic etiologies, diagnosis, and treatment of tuberous sclerosis complex.
        Annu Rev Genom Hum Genet. 2019; 20: 217-240
        • Niida Y
        • Lawrence-Smith NY
        • Banwell A
        • et al.
        Analysis of both TSC1 and TSC2 for germline mutations in 126 unrelated patients with tuberous sclerosis.
        Hum Mutat. 1999; 14: 412-422
        • Jones AC
        • Shyamsundar MM
        • Thomas MW
        • et al.
        Comprehensive mutation analysis of TSC1 and TSC2—and phenotypic correlations in 150 families with tuberous sclerosis.
        Am J Hum Genet. 2002; 64: 1305-1315
        • Wentink M
        • Nellist M
        • Hoogeveen-Westerfeld M
        • et al.
        Functional characterization of the TSC2 c.3598C>T (p.R1200W) missense mutation that co-segregates with tuberous sclerosis complex in mildly affected kindreds.
        Clin Genet. 2012; 81: 453-461
        • Verhoef S
        • Bakker L
        • Tempelaars AM
        • et al.
        High rate of mosaicism in tuberous sclerosis complex.
        Am J Hum Genet. 1999; 64: 1632-1637
        • Rose VM
        • Bakker L
        • Tempelaars AM
        • et al.
        Germ-line mosaicism in tuberous sclerosis: how common?.
        Am J Hum Genet. 2002; 64: 986-992
        • Tyburczy ME
        • Dies KA
        • Glass J
        • et al.
        Mosaic and intronic mutations in TSC1/TSC2 explain the majority of TSC patients with no mutation identified by conventional testing.
        PLoS Genet. 2015; 11e1005637
        • Roach ES
        • DiMario FJ
        • Kandt RS
        • Northrup H.
        Tuberous sclerosis consensus conference: recommendations for diagnostic evaluation.
        J Child Neurol. 1999; 14: 401-407
        • Yates J
        • Bakel I
        • Sepp T
        • et al.
        Female germline mosaicism in tuberous sclerosis confirmed by molecular genetic analysis.
        Hum Mol Genet. 1997; 6: 2265-2269
        • Hall JG
        • Byers PH.
        Genetics of tuberous sclerosis.
        Lancet. 1987; 1: 751
        • Roberts PS
        • Dabora S
        • Thiele EA
        • Franz DN
        • Jozwiak S
        • Kwiatkowski DJ.
        Somatic mosaicism is rare in unaffected parents of patients with sporadic tuberous sclerosis.
        J Med Genet. 2004; 41: e69
        • Kaneda M.
        Tuberous sclerosis complex.
        Brain Nerve. 2019; 71: 374-379
        • Sancak O
        • Nellist M
        • Goedbloed M
        • et al.
        Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype-phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex.
        Eur J Hum Genet. 2005; 13: 731-741
        • Retterer K
        • Juusola J
        • Cho MT
        • et al.
        Clinical application of whole-exome sequencing across clinical indications.
        Genet Med. 2016; 18: 696-704
        • Collins FS
        • Lander ES
        • Rogers J
        • Waterson RH.
        Finishing the euchromatic sequence of the human genome.
        Nature. 2004; 431: 931-945
        • Nellist M
        • Brouwer RWW
        • Kockx CEM
        • et al.
        Targeted next generation sequencing reveals previously unidentified TSC1 and TSC2 mutations.
        BMC Med Genet. 2015; 16: 10
        • Behjati S
        • Tarpey PS.
        What is next generation sequencing?.
        Arch Dis Child Educ Pract Ed. 2013; 98: 236-238
        • Weinmann J
        • Grimm D.
        Next-generation AAV vectors for clinical use: an ever-accelerating race.
        Virus Genes. 2017; 53: 707-713
        • Prabhakar S
        • Cheah PS
        • Zhang X
        • et al.
        Long-term therapeutic efficacy of intravenous AAV-mediated hamartin replacement in mouse model of tuberous sclerosis type 1.
        Mol Ther Methods Clin Dev. 2019; 15: 18-26
        • Northrup H
        • Krueger DA
        International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference.
        Pediatr Neurol. 2013; 49: 243-254
        • Amin S
        • Kingswood JC
        • Bolton PF
        • et al.
        The UK guidelines for management and surveillance of tuberous sclerosis complex.
        QJM. 2019; 112: 171-182
        • Gamzu R
        • Achiron R
        • Hegesh J
        • et al.
        Evaluating the risk of tuberous sclerosis in cases with prenatal diagnosis of cardiac rhabdomyoma.
        Prenat Diagn. 2002; 22: 1044-1047
        • Milunsky A
        • Shim SH
        • Ito M
        • et al.
        Precise prenatal diagnosis of tuberous sclerosis by sequencing the TSC2 gene.
        Prenat Diagn. 2005; 25: 582-585
        • Jardim A
        • Melo JB
        • Matosos E
        • Pires LM
        • Ramos L
        • Carreira IM.
        Preimplantation genetic diagnosis at 20 years.
        Prenat Diagn. 2007; 27: 380-381
        • Basille C
        • Frydman R
        • El Aly A
        • et al.
        Preimplantation genetic diagnosis: state of the art.
        Eur J Obstet Gynecol Reprod Biol. 2009; 145: 9-13
        • Kwiatkowska J
        • Wigowska-Sowinska J
        • Napierala D
        • Slomski R
        • Kwiatkowski DJ.
        Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis.
        N Engl J Med. 1999; 340: 703-707
        • Caban C
        • Khan N
        • Hasbani DM
        • Crino PB.
        Genetics of tuberous sclerosis complex: implications for clinical practice.
        Appl Clin Genet. 2017; 10: 1-8
        • Datta AN
        • Hahn CD
        • Sahin M.
        Clinical presentation and diagnosis of tuberous sclerosis complex in infancy.
        J Child Neurol. 2008; 23: 268-273
        • Jozwiak S
        • Kotulska K
        • Wong M
        • Bebin M.
        Modifying genetic epilepsies – results from studies on tuberous sclerosis complex.
        Neuropharmacology. 2020; 166107908
        • Franco V
        • Perucca E.
        Pharmacological and therapeutic properties of cannabidiol for epilepsy.
        Drugs. 2019; 79: 1435-1454
        • Garg A
        • Gorla SR
        • Kardon RE
        • Swaminathan S.
        Rapid involution of large cardiac rhabdomyomas with everolimus therapy.
        World J Pediatr Congenit Heart Surg. 2021; 12: 426-429
        • Shi M
        • He S
        • Chen P
        • et al.
        Photodynamic therapy in a patient with facial angiofibromas due to tuberous sclerosis complex.
        Photodiagnosis Photodyn Ther. 2019; 28: 183-185
        • Giacaman A
        • Martín-Santiago A.
        Fibrous cephalic plaque in tuberous sclerosis complex: treatment with 0.2% rapamycin.
        Actas Dermosifiliogr. 2019; 110: e13
      4. Zureick AH, McFadden KA, Mody R, Koschmann C. Successful treatment of a TSC2-mutant glioblastoma with everolimus. BMJ Case Rep. 20191;12:e227734.

        • Kim C
        • Do KH
        • Cha J
        • et al.
        Effects of sirolimus in lymphangioleiomyomatosis patients on lung cysts and pulmonary function: long-term follow-up observational study.
        Eur Radiol. 2020; 30: 735-743