Advertisement

Pigmentary mosaicism

      Abstract

      Pigmentary mosaicism refers to patterned hypo- and/or hyperpigmentation that results from genetic heterogeneity of skin cells. The most common clinical patterns are streaks and swirls following Blaschko's lines in narrow or broad bands and a block-like distribution. This contribution provides an update on the diverse genetic etiologies, cutaneous findings, potential associated extracutaneous abnormalities, and management of various forms of pigmentary mosaicism. Current terminology, the recent reappraisal of the classic patterns based on scientific advances, and distinct clinicogenetic entities are highlighted. A practical approach to the diagnosis and evaluation of patients with pigmentary mosaicism is provided, including clues to distinguish other conditions in the differential diagnosis and applications of advances in genetic testing technology.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blaschko A.
        Die Nervenverteilung in der Haut in ihrer Beziezehung zu den Erkrankungen der Haut [Nerve distribution in the skin in relation to skin diseases].
        in: Paper presented at: Beilage zu den Verhandlungen der Deutschen Dermatologischen Gesellschaft VII Congress Breslau, Wein Braumèuller, 1901
        • Happle R.
        Genetic mechanisms giving rise to linear skin lesions.
        in: Paper presented at: Joint Meeting of the Vereinigung Südwestdeutscher Dermatologen and the Vereinigung Rheinisch-Westfälischer Dermatologen, Heidelberg, GermanyOctober 1976
        • Jackson R.
        The lines of Blaschko: a review and reconsideration. Observations of the cause of certain unusual linear conditions of the skin.
        Br J Dermatol. 1976; 95: 349-360
        • Happle R.
        Mosaicism in human skin. Understanding the patterns and mechanisms.
        Arch Dermatol. 1993; 129: 1460-1470
        • Happle R.
        The molecular revolution in cutaneous biology: era of mosaicism.
        J Invest Dermatol. 2017; 137: e73-e77
        • Kinsler VA
        • Boccara O
        • Fraitag S
        • et al.
        Mosaic abnormalities of the skin: review and guidelines from the European Reference Network for rare skin diseases.
        Br J Dermatol. 2020; 182: 552-563
        • Ju YS
        • Martincorena I
        • Gerstung M
        • et al.
        Somatic mutations reveal asymmetric cellular dynamics in the early human embryo.
        Nature. 2017; 543: 714-718
        • Lombillo VA
        • Sybert VP.
        Mosaicism in cutaneous pigmentation.
        Curr Opin Pediatr. 2005; 17: 494-500
        • Kromann AB
        • Ousager LB
        • Ali IKM
        • et al.
        Pigmentary mosaicism: a review of original literature and recommendations for future handling.
        Orphanet J Rare Dis. 2018; 13: 39
        • Nehal KS
        • PeBenito R
        • Orlow SJ.
        Analysis of 54 cases of hypopigmentation and hyperpigmentation along the lines of Blashko.
        Arch Dermatol. 1996; 132: 1167-1170
        • Cohen J
        • Shahrokh K
        • Cohen B.
        Analysis of 36 cases of blashkoid dyspigmentation: reading between the lines of Blaschko.
        Pediatr Dermatol. 2014; 31: 471-476
        • Belzile E
        • McCuaig C
        • Le Meur JB
        • et al.
        Patterned cutaneous hypopigmentation phenotype characterization: a retrospective study in 106 children.
        Pediatr Dermatol. 2019; 36: 869-875
        • Pavone P
        • Praticò AD
        • Ruggieri M
        • et al.
        Hypomelanosis of Ito: a round on the frequency and type of epileptic complications.
        Neurol Sci. 2015; 36: 1173-1180
        • Ruiz-Maldonado R
        • Toussaint S
        • Tamayo L
        • et al.
        Hypomelanosis of Ito: diagnostic criteria and report of 41 cases.
        Pediatr Dermatol. 1992; 9: 1-10
        • Taibjee SM
        • Bennett DC
        • Moss C.
        Abnormal pigmentation in hypomelanosis of Ito and pigmentary mosaicism: the role of pigmentary genes.
        Br J Dermatol. 2004; 151: 269-282
        • Ruggieri M
        • Pratico AD.
        Mosaic neurocutaneous disorders and their causes.
        Semin Pediatr Neurol. 2015; 22: 207-233
        • Treat J.
        Patterned pigmentation in children.
        Pediatr Clin N Am. 2010; 57: 1121-1129
        • Pavone V
        • Signorelli SS
        • Praticò AD
        • et al.
        Total hemi-overgrowth in pigmentary mosaicism of the (hypomelanosis of) Ito type: eight case reports.
        Medicine (Baltimore). 2016; 95: e2705
        • Happle R.
        Mosaicism in Human Skin: Understanding Nevi, Nevoid Skin Disorders, and Cutaneous Neoplasia.
        Springer-Verlag, Berlin2014
        • Kinsler VA
        • Larue L.
        The patterns of birthmarks suggest a novel population of melanocyte precursors arising around the time of gastrulation.
        Pig Cell Melanoma Res. 2018; 31: 95-109
        • Di Lernia V.
        Segmental nevus depigmentosus: analysis of 20 patients.
        Pediatr Dermatol. 1999; 16: 349-353
        • Metzker A
        • Morag C
        • Weitz R.
        Segmental pigmentation disorder.
        Acta Derm Venereol. 1983; 63: 167-169
        • Hogeling M
        • Frieden IJ.
        Segmental pigmentation disorder.
        Br J Dermatol. 2010; 162: 1337-1341
        • Torchia D
        • Happle R.
        Segmental hypomelanosis and hypermelanosis arranged in a checkerboard pattern are distinct naevi: flag-like hypomelanotic naevus and flag-like hypermelanotic naevus.
        J Eur Acad Dermatol Venereol. 2015; 29: 2088-2099
        • Bolognia JL
        • Lazova R
        • Watsky K.
        The development of lentigines within segmental achromic nevi.
        J Am Acad Dermatol. 1998; 39: 330-333
        • Ruggieri M
        • Polizzi A
        • Schepis C
        • et al.
        Cutis tricolor: a literature review and report of five new cases.
        Quant Imaging Med Surg. 2016; 6: 525-534
        • Adameyko I
        • Lallement F
        • Aquino JB
        • et al.
        Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin.
        Cell. 2009; 139: 366-379
        • Ernfors P.
        Cellular origin and developmental mechanisms during the formation of skin melanocytes.
        Exp Cell Res. 2010; 316: 1397-1407
        • Vandamme N
        • Berx G.
        From neural crest cells to melanocytes: cellular plasticity during development and beyond.
        Cell Molec Life Sci. 2019; 76: 1919-1934
        • Funkhouser CH
        • Kinsler VA
        • Frieden IJ.
        Striking contiguous depigmentation across the lower limbs in piebaldism and its implications for understanding melanocytic migration and development.
        Pediatr Dermatol. 2019; 36: 511-513
        • Mirzaa GM
        • Campbell CD
        • Solovieff N
        • et al.
        Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism.
        JAMA Neurol. 2016; 7: 836-845
        • Handoko M
        • Emrick LT
        • Rosenfeld JA.
        Recurrent mosaic MTOR c.5930C >T (p.Thr1977Ile) variant causing megalencephaly, asymmetric polymicrogyria, and cutaneous pigmentary mosaicism: case report and review of the literature.
        Am J Med Genet. 2019; 179A: 475-479
        • Sorlin A
        • Maruani A
        • Aubriot-Lorton MH
        • et al.
        Mosaicism for a KITLG mutation in linear and whorled nevoid hypermelanosis.
        J Invest Dermatol. 2017; 137: 1575-1578
        • Weinstein LS
        • Shenker A
        • Gejman PV
        • et al.
        Activating mutations of the stimulatory G protein in the McCune-Albright syndrome.
        N Engl J Med. 1991; 325: 1688-1695
      1. Boyce AM, Florenzano P, de Castro LF, Collins MT. Fibrous dysplasia/McCune-Albright syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al, eds. GeneReviews®. Seattle, WA: University of Washington; 1993-2019.

        • Wilkens A
        • Liu H
        • Park K
        • et al.
        Novel clinical manifestations in Pallister-Killian syndrome: comprehensive evaluation of 59 affected individuals and review of previously reported cases.
        Am J Med Genet A. 2012; 158A: 3002-3017
        • González-Enseñat MA
        • Vicente A
        • Poo P
        • et al.
        Phylloid hypomelanosis and mosaic partial trisomy 13: two cases that provide further evidence of a distinct clinicogenetic entity.
        Arch Dermatol. 2009; 145: 576-578
        • Oiso N
        • Tsuruta D
        • Imanishi H
        • et al.
        Phylloid hypermelanosis and melanocytic nevi with aggregated and disfigured melanosomes: causal relationship between phylloid pigment distribution and chromosome 13 abnormalities.
        Dermatology. 2010; 220: 169-172
        • Hansen LK
        • Brandrup F
        • Rasmussen K.
        Pigmentary mosaicism with mosaic chromosome 5p tetrasomy.
        Br J Dermatol. 2003; 149: 414-416
        • Happle R.
        The categories of cutaneous mosaicism: a proposed classification.
        Am J Med Genet Part A. 2016; 170A: 452-459
        • Whitelaw E
        • Martin DIK.
        Retrotransposons as epigenetic mediators of phenotypic variation in mammals.
        Nat Genet. 2001; 27: 361-364
        • Clark LA
        • Wahl JM
        • Rees CA
        • et al.
        Retrotransposon insertion in SILV is responsible for merle patterning in the domestic dog.
        Proc Natl Acad Sci U S A. 2006; 103: 1376-1381
        • Kerns JA
        • Cargill EJ
        • Clark LA
        • et al.
        Linkage and segregation analysis of black and brindle coat color in domestic dogs.
        Genetics. 2007; 176: 1679-1689
        • Happle R.
        Monoallelic expression on autosomes may explain an unusual heritable form of pigmentary mosaicism: a historical case revisited.
        Clin Exp Dermatol. 2009; 34: 834-837
        • Pascual-Castroviejo I
        • Lopez-Rodriguez L
        • de la Cruz Medina M
        • et al.
        Hypomelanosis of Ito: neurologic complications in 34 cases.
        Can J Neurol Sci. 1988; 15: 124-129
        • Horn D
        • Happle R
        • Neitzel H
        • et al.
        Pigmentary mosaicism of the hyperpigmented type in two half-brothers.
        Am J Med Genet. 2002; 112: 65-69
        • Montagna P
        • Procaccianti G
        • Galli G
        • et al.
        Familial hypomelanosis of Ito.
        Eur Neurol. 1991; 31: 345-347
        • Browne F
        • Taibjee SM
        • Moss C.
        Segmental pigmentation disorder—response.
        Br J Dermatol. 2011; 164: 225-227
        • Thapa R
        • Dhar S
        • Malakar R
        • et al.
        Hypomelanosis of Ito-whorled hyperpigmentation combination: a mirror image presentation.
        Pediatr Dermatol. 2007; 24: 572-573
        • Restano L
        • Barbareschi M
        • Cambiaghi S
        • et al.
        Heterochromia of the scalp hair: a result of pigmentary mosaicism?.
        J Am Acad Dermatol. 2001; 45: 136-139
        • Has C
        • Happle R
        • Fischer J
        • Grüninger G
        • Technau-Hafsi K.
        Postzygotic HRAS mutation in heterochromia of straight scalp hair.
        Br J Dermatol. 2019; 181: 1074-1076
        • Khurana A
        • Singal A
        • Pandhi D.
        Hypomelanosis of Ito and multiple naevoid hypertrichosis: rare cutaneous mosaicism.
        Australas J Dermatol. 2014; 55: e29-e32
        • Shimizu K
        • Makino T
        • Ueda C
        • et al.
        Detection of hypohidrosis in Japanese patients with pigmentary mosaicism.
        Eur J Dermatol. 2013; 23: 913-914
        • Nevares-Pomales OW
        • Carrasquillo OY
        • Santiago-Vazquez M
        • et al.
        Rare variant of agminated Spitz nevi on a hypopigmented background distribution: case report and review of literature.
        Am J Dermatopathol. 2018; 40: 686-689
        • Pavone L
        • Ruggieri M
        • Spalice A
        • et al.
        Hypomelanosis of Ito.
        in: Curatolo P Riva D Neurocutaneous Syndromes in Children. John Libbey Eurotext, Montrouge, France2006: 25-32
        • Lee HS
        • Chun YS
        • Hann SK.
        Nevus depigmentosus: clinical features and histopathological characteristics in 67 patients.
        J Am Acad Dermatol. 1999; 40: 21-26
        • Kim SK
        • Kang HY
        • Lee ES
        • et al.
        Clinical and histopathologic characteristics of nevus depigmentosus.
        J Am Acad Dermatol. 2006; 55: 423-428
        • Xu AE
        • Huang B
        • Li YW
        • et al.
        Clinical, histopathological and ultrastructural characteristics of naevus depigmentosus.
        Clin Exp Dermatol. 2008; 33: 400-405
        • Collins MT
        • Singer FR
        • Eugster E.
        McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia.
        Orphanet J Rare Dis. 2012; 7: S4
        • Rieger R
        • Kofler R
        • Borkenstein M
        • et al.
        Melanotic macules following Blaschko's lines in McCune-Albright syndrome.
        Br J Dermatol. 1994; 130: 215-220
        • Javaid MK
        • Boyce A
        • Appelman-Dijkstra N
        • et al.
        Best practice management guidelines for fibrous dysplasia/McCune-Albright syndrome: a consensus statement from the FD/MAS international consortium.
        Orphanet J Rare Dis. 2019; 14: 139
        • Guareschi E
        • Garavelli L
        • Pedori S
        • et al.
        Dermatologic features in Pallister-Killian syndrome and their importance to the diagnosis.
        Pediatr Dermatol. 2007; 24: 426-428
        • Izumi K
        • Krantz ID.
        Pallister-Killian syndrome.
        Am J Med Genet. 2014; 166C: 406-413
        • Happle R
        • Franco-Guío MF
        • Santacoloma-Osorio G.
        Phylloid hypermelanosis: a cutaneous marker of several different disorders?.
        Pediatr Dermatol. 2014; 31: 504-506
        • Kuster W
        • Konig A.
        Hypomelanosis of Ito: no entity, but a cutaneous sign of mosaicism.
        Am J Med Genet. 1999; 85: 346-350
        • Lee HS
        • Chun YS
        • Hann SK.
        Nevus depigmentosus: clinical features and histopathologic characteristics in 67 patients.
        J Am Acad Dermatol. 1999; 40: 21-26
        • Mehta V
        • Vasanth V
        • Balachandran C
        • et al.
        Linear and whorled nevoid hypermelanosis.
        Int J Dermatol. 2011; 50: 491-492
        • Ertam I
        • Turk BG
        • Urkmez A
        • et al.
        Linear and whorled nevoid hypermelanosis: dermatoscopic features.
        J Am Acad Dermatol. 2009; 60: 328-331
        • Di Lernia V.
        Linear and whorled hypermelanosis.
        Pediatr Dermatol. 2007; 24: 205-210
        • Sybert VP.
        Hypomelanosis of Ito: a description, not a diagnosis.
        J Invest Dermatol. 1994; 103: 141S-143S
        • Taibjee SM
        • Hall D
        • Balderson D
        • et al.
        Keratinocyte cytogenetics in 10 patients with pigmentary mosaicism: identification of one case of trisomy 20 mosaicism confined to keratinocytes.
        Clin Exp Dermatol. 2009; 34: 823-829
        • Campbell IM
        • Shaw CA
        • Stankiewicz P
        • et al.
        Somatic mosaicism: implications for disease and transmission genetics.
        Trends Genet. 2015; 31: 382-392
        • Lim YH
        • Moscato Z
        • Choate KA.
        Mosaicism in cutaneous disorders.
        Annu Rev Genet. 2017; 51: 123-141
        • Theisen A
        • Rosenfeld JA
        • Farrell SA
        • et al.
        aCGH detects partial tetrasomy of 12p in blood from Pallister-Killian syndrome cases without invasive skin biopsy.
        Am J Med Genet A. 2009; 149A: 914-918
        • Catherine S
        • Lacour JP
        • Passeron T.
        Treatment of linear and whorled hypermelanosis with Q-switched laser.
        Dermatol Surg. 2014; 40: 1044-1046
        • Bae JM
        • Jung HM
        • Chang HS
        • et al.
        Treatment of nevus depigmentosus using the 308-nm excimer laser: a retrospective study of 14 patients.
        J Am Acad Dermatol. 2016; 75: 626-627
        • Bae JM
        • Eun SH
        • Kim YH
        • Park JH
        • Hann S-K.
        Excimer stamp test distinguishing between nevus depigmentosus and segmental vitiligo.
        Pigment Cell Melanoma Res. 2019; 32: 864-865
        • Moosa S
        • Böhrer-Rabel H
        • Altmüller J
        • et al.
        Smith-Kingsmore syndrome: a third family with the MTOR mutation c.5395G>A p.(Glu1799Lys) and evidence for paternal gonadal mosaicism.
        Am J Med Genet A. 2017; 173: 264-267
        • Gordo G
        • Tenorio J
        • Arias P
        • et al.
        mTOR mutations in Smith-Kingsmore syndrome: four additional patients and a review.
        Clin Genet. 2018; 93: 762-775
        • Coleman E
        • Panse G
        • Cowper S
        • et al.
        Disappearing pigmentary mosaicism during imatinib treatment for gastrointestinal stromal tumors.
        JAAD Case Rep. 2019; 5: 170-172
        • Carmignac V
        • Mignot C
        • Blanchard E
        • et al.
        Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities.
        Genet Med. 2021; 23: 1484-1491
        • Saida K
        • Chong PF
        • Yamaguchi A
        • et al.
        Monogenic causes of pigmentary mosaicism.
        Hum Genet. 2022; (PMID 35178721 (Epub ahead of print))
        • Vabres P
        • Sorlin A
        • Kholmanskikh SS
        • et al.
        Postzygotic inactivating mutations of RHOA cause a mosaic neuroectodermal syndrome.
        Nat Genet. 2019; 51: 1438-1441
        • Cai ZR
        • McCuaig C
        • Hatami A
        • et al.
        A novel pathogenic RHOA variant in a patient with patterned cutaneous hypopigmentation associated with extracutaneous finding.
        Pediatr Dermatol. 2022; 39: 281-287
        • Garcua-Melendo C
        • Roé E
        • Rodríguez-Santiago B
        • et al.
        A case report of PHF6 mosaicism: Beyond the classic Börjeson-Forssman-Lehmann syndrome.
        Pediatr Dermatol. 2021; 38: 919-925
        • Lehalle D
        • Vabres P
        • Sorlin A
        • et al.
        De novo mutations in the X-linked TFE3 gene cause intellectual disability with pigmentary mosaicism and storage disorder-like features.
        J Med Genet. 2020; 57: 808-819
        • Reijnders MR
        • Zachariadis V
        • Latour B
        • et al.
        De novo loss-of-function mutations in USP9X cause a female-specific recognizable syndrome with developmental delay and congenital malformations.
        Am J Hum Genet. 2016; 98: 373-381
        • Oren-Shabtai M
        • Metzker A
        • Ben Amitai D
        • et al.
        Segmental pigmentation disorder: clinical manifestations and epidemiological features in 144 patients, a retrospective case-control study.
        Acta Derm Venereol. 2022; (PMID: 35312024  (Epub ahead of print))
        • Salas-Labadía C
        • Gómez-Carmona S
        • Cruz-Alcívar R
        • et al.
        Genetic and clinical characterization of 73 pigmentary mosaicism patients: revealing the genetic basis of clinical manifestations.
        Orphanet J Rare Dis. 2019; 14: 259