Advertisement

Nutrition and melanoma prevention

      Abstract

      There has been considerable research in recent years on dietary factors and/or nutritional elements that might impact melanoma risk. A wide variety of dietary compounds have been studied, but only a selected group will be discussed in this review. Many have promising in vitro evidence supporting their potential, and some have been associated with decreased melanoma risk in epidemiologic studies; however, data from randomized controlled trials in humans are lacking. Future studies may be able to clarify the potential role of dietary components in melanoma risk reduction.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. American Cancer Society. Key Statistics for Melanoma Skin Cancer. https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html. Accessed December 27, 2019.

      2. American Cancer Society. Survival Rates for Melanoma Skin Cancer. https://www.cancer.org/cancer/melanoma-skin-cancer/detection-diagnosis-staging/survival-rates-for-melanoma-skin-cancer-by-stage.html. Accessed December 27, 2019.

        • DeWeerdt S.
        The edible skincare diet.
        Nature. 2018; 563: S94-S95
        • Hsu S.
        Green tea and the skin.
        J Am Acad Dermatol. 2005; 52: 1049-1059
        • Jensen JD
        • Wing GJ
        • Dellavalle RP.
        Nutrition and melanoma prevention.
        Clin Dermatol. 2010; 28: 644-649
        • Tong LX
        • Young LC.
        Nutrition: the future of melanoma prevention?.
        J Am Acad Dermatol. 2014; 71: 151-160
        • Murzaku EC
        • Bronsnick T
        • Rao BK.
        Diet in dermatology: part II. Melanoma, chronic urticaria, and psoriasis.
        J Am Acad Dermatol. 2014; 71 (1053.e1-1053.e16)
        • Yang K
        • Fung TT
        • Nan H.
        An epidemiological review of diet and cutaneous malignant melanoma.
        Cancer Epidemiol Biomarkers Prev. 2018; 27: 1115-1122
        • Soldati L
        • Di Renzo L
        • Jirillo E
        • Ascierto PA
        • Marincola FM
        • De Lorenzo A.
        The influence of diet on anti-cancer immune responsiveness.
        J Transl Med. 2018; 16: 75
        • Veierød MB
        • Thelle DS
        • Laake P.
        Diet and risk of cutaneous malignant melanoma: a prospective study of 50,757 Norwegian men and women.
        Int J Cancer. 1997; 71: 600-604
        • Fortes C
        • Mastroeni S
        • Melchi F
        • et al.
        A protective effect of the Mediterranean diet for cutaneous melanoma.
        Int J Epidemiol. 2008; 37: 1018-1029
        • Malagoli C
        • Malavolti M
        • Agnoli C
        • et al.
        Diet quality and risk of melanoma in an Italian population.
        J Nutr. 2015; 145: 1800-1807
        • Gogas H
        • Trakatelli M
        • Dessypris N
        • et al.
        Melanoma risk in association with serum leptin levels and lifestyle parameters: a case-control study.
        Ann Oncol. 2008; 19: 384-389
        • Mantzoros CS
        • Trakatelli M
        • Gogas H
        • et al.
        Circulating adiponectin levels in relation to melanoma: a case-control study.
        Eur J Cancer. 2007; 43: 1430-1436
        • Jung JI
        • Cho HJ
        • Jung YJ
        • et al.
        High-fat diet-induced obesity increases lymphangiogenesis and lymph node metastasis in the B16F10 melanoma allograft model: roles of adipocytes and M2-macrophages.
        Int J Cancer. 2015; 136: 258-270
        • Malavolti M
        • Malagoli C
        • Crespi CM
        • et al.
        Glycaemic index, glycaemic load and risk of cutaneous melanoma in a population-based, case-control study.
        Br J Nutr. 2017; 117: 432-438
        • Malagoli C
        • Malavolti M
        • Farnetani F
        • et al.
        Food and beverage consumption and melanoma risk: a population-based case-control study in northern Italy.
        Nutrients. 2019; 11: 2206
        • Caini S
        • Boniol M
        • Tosti G
        • et al.
        Vitamin D and melanoma and non-melanoma skin cancer risk and prognosis: a comprehensive review and meta-analysis.
        Eur J Cancer. 2014; 50: 2649-2658
        • Brożyna AA
        • Jóźwicki W
        • Janjetovic Z
        • Slominski AT.
        Expression of the vitamin D-activating enzyme 1α-hydroxylase (CYP27B1) decreases during melanoma progression.
        Hum Pathol. 2013; 44: 374-387
        • Slominski AT
        • Brożyna AA
        • Skobowiat C
        • et al.
        On the role of classical and novel forms of vitamin D in melanoma progression and management.
        J Steroid Biochem Mol Biol. 2018; 177: 159-170
        • Brożyna AA
        • Jóźwicki W
        • Slominski AT.
        Decreased VDR expression in cutaneous melanomas as marker of tumor progression: new data and analyses.
        Anticancer Res. 2014; 34: 2735-2743
        • Zeljic K
        • Kandolf-Sekulovic L
        • Supic G
        • et al.
        Melanoma risk is associated with vitamin D receptor gene polymorphisms.
        Melanoma Res. 2014; 24: 273-279
        • Newton-Bishop JA
        • Davies JR
        • Latheef F
        • et al.
        25-Hydroxyvitamin D2 /D3 levels and factors associated with systemic inflammation and melanoma survival in the Leeds Melanoma Cohort.
        Int J Cancer. 2015; 136: 2890-2899
        • Wyatt C
        • Lucas RM
        • Hurst C
        • Kimlin MG.
        Vitamin D deficiency at melanoma diagnosis is associated with higher Breslow thickness.
        PLoS One. 2015; 10e0126394
        • Vinceti M
        • Malagoli C
        • Fiorentini C
        • et al.
        Inverse association between dietary vitamin D and risk of cutaneous melanoma in a northern Italy population.
        Nutr Cancer. 2011; 63: 506-513
        • Gandini S
        • Boniol M
        • Haukka J
        • et al.
        Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma.
        Int J Cancer. 2011; 128: 1414-1424
        • Chlebowski RT
        • Johnson KC
        • Kooperberg C
        • et al.
        Calcium plus vitamin D supplementation and the risk of breast cancer.
        J Natl Cancer Inst. 2008; 100: 1581-1591
        • Wactawski-Wende J
        • Kotchen JM
        • Anderson GL
        • et al.
        Calcium plus vitamin D supplementation and the risk of colorectal cancer.
        N Engl J Med. 2006; 354: 684-696
        • Lipplaa A
        • Fernandes R
        • Marshall A
        • et al.
        25-hydroxyvitamin D serum levels in patients with high risk resected melanoma treated in an adjuvant bevacizumab trial.
        Br J Cancer. 2018; 119: 793-800
        • Saw RPM
        • Armstrong BK
        • Mason RS
        • et al.
        Adjuvant therapy with high dose vitamin D following primary treatment of melanoma at high risk of recurrence: a placebo controlled randomised phase II trial (ANZMTG 02.09 Mel-D).
        BMC Cancer. 2014; 14: 780
        • De Smedt J
        • Van Kelst S
        • Boecxstaens V
        • et al.
        Vitamin D supplementation in cutaneous malignant melanoma outcome (ViDMe): a randomized controlled trial.
        BMC Cancer. 2017; 17: 562
        • Skobowiat C
        • Oak ASW
        • Kim T-K
        • et al.
        Noncalcemic 20-hydroxyvitamin D3 inhibits human melanoma growth in in vitro and in vivo models.
        Oncotarget. 2017; 8: 9823-9834
        • Slominski AT
        • Brożyna AA
        • Zmijewski MA
        • et al.
        Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management.
        Lab Invest. 2017; 97: 706-724
        • Russo I
        • Caroppo F
        • Alaibac M.
        Vitamins and melanoma.
        Cancers (Basel). 2015; 7: 1371-1387
        • Malafa MP
        • Fokum FD
        • Smith L
        • Louis A.
        Inhibition of angiogenesis and promotion of melanoma dormancy by vitamin E succinate.
        Ann Surg Oncol. 2002; 9: 1023-1032
        • Malafa MP
        • Fokum FD
        • Mowlavi A
        • Abusief M
        • King M.
        Vitamin E inhibits melanoma growth in mice.
        Surgery. 2002; 131: 85-91
        • Wang X-F
        • Dong L
        • Zhao Y
        • Tomasetti M
        • Wu K
        • Neuzil J.
        Vitamin E analogues as anticancer agents: lessons from studies with alpha-tocopheryl succinate.
        Mol Nutr Food Res. 2006; 50: 675-685
        • Montagnani Marelli M
        • Marzagalli M
        • Moretti RM
        • et al.
        Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.
        Sci Rep. 2016; 6: 30502
        • Marzagalli M
        • Moretti RM
        • Messi E
        • et al.
        Targeting melanoma stem cells with the vitamin E derivative δ-tocotrienol.
        Sci Rep. 2018; 8: 587
        • Miura K
        • Green AC.
        Dietary antioxidants and melanoma: evidence from cohort and intervention studies.
        Nutr Cancer. 2015; 67: 867-876
        • Le Gal K
        • Ibrahim MX
        • Wiel C
        • et al.
        Antioxidants can increase melanoma metastasis in mice.
        Sci Transl Med. 2015; 7 (308re8)
        • Naqvi AZ
        • Davis RB
        • Mukamal KJ.
        Dietary fatty acids and peripheral artery disease in adults.
        Atherosclerosis. 2012; 222: 545-550
        • Psaltopoulou T
        • Kosti RI
        • Haidopoulos D
        • Dimopoulos M
        • Panagiotakos DB.
        Olive oil intake is inversely related to cancer prevalence: a systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies.
        Lipids Health Dis. 2011; 10: 127
        • Noel SE
        • Stoneham ACS
        • Olsen CM
        • Rhodes LE
        • Green AC.
        Consumption of omega-3 fatty acids and the risk of skin cancers: a systematic review and meta-analysis.
        Int J Cancer. 2014; 135: 149-156
        • Lauby-Secretan B
        • Loomis D
        • Grosse Y
        • et al.
        Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls.
        Lancet Oncol. 2013; 14: 287-288
        • Donat-Vargas C
        • Berglund M
        • Glynn A
        • Wolk A
        • Åkesson A.
        Dietary polychlorinated biphenyls, long-chain n-3 polyunsaturated fatty acids and incidence of malignant melanoma.
        Eur J Cancer. 2017; 72: 137-143
        • Belenky P
        • Bogan KL
        • Brenner C.
        NAD+ metabolism in health and disease.
        Trends Biochem Sci. 2007; 32: 12-19
        • Sousa FG
        • Matuo R
        • Soares DG
        • et al.
        PARPs and the DNA damage response.
        Carcinogenesis. 2012; 33: 1433-1440
        • Damian DL
        • Patterson CRS
        • Stapelberg M
        • Park J
        • Barnetson RStC
        • Halliday GM.
        UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide.
        J Invest Dermatol. 2008; 128: 447-454
        • Yiasemides E
        • Sivapirabu G
        • Halliday GM
        • Park J
        • Damian DL.
        Oral nicotinamide protects against ultraviolet radiation-induced immunosuppression in humans.
        Carcinogenesis. 2009; 30: 101-105
        • Surjana D
        • Halliday GM
        • Damian DL.
        Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in human keratinocytes and ex vivo skin.
        Carcinogenesis. 2013; 34: 1144-1149
        • Surjana D
        • Halliday GM
        • Martin AJ
        • Moloney FJ
        • Damian DL.
        Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials.
        J Invest Dermatol. 2012; 132: 1497-1500
        • Chen AC
        • Martin AJ
        • Choy B
        • et al.
        A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention.
        N Engl J Med. 2015; 373: 1618-1626
        • Thompson BC
        • Surjana D
        • Halliday GM
        • Damian DL.
        Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes.
        Exp Dermatol. 2014; 23: 509-511
        • Chhabra G
        • Garvey DR
        • Singh CK
        • Mintie CA
        • Ahmad N.
        Effects and mechanism of nicotinamide against UVA- and/or UVB-mediated DNA damages in normal melanocytes.
        Photochem Photobiol. 2019; 95: 331-337
        • Malesu R
        • Martin AJ
        • Lyons JG
        • et al.
        Nicotinamide for skin cancer chemoprevention: effects of nicotinamide on melanoma in vitro and in vivo.
        Photochem Photobiol Sci. 2020; 19: 171-179
        • Audrito V
        • Managò A
        • La Vecchia S
        • et al.
        Nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic target in BRAF-mutated metastatic melanoma.
        J Natl Cancer Inst. 2018; : 110
        • Ohanna M
        • Cerezo M
        • Nottet N
        • et al.
        Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype.
        Genes Dev. 2018; 32: 448-461
        • Itzhaki O
        • Greenberg E
        • Shalmon B
        • et al.
        Nicotinamide inhibits vasculogenic mimicry, an alternative vascularization pathway observed in highly aggressive melanoma.
        PLoS One. 2013; 8: e57160
        • Katiyar SK.
        Skin photoprotection by green tea: antioxidant and immunomodulatory effects.
        Curr Drug Targets Immune Endocr Metabol Disord. 2003; 3: 234-242
        • Katiyar SK.
        Green tea prevents non-melanoma skin cancer by enhancing DNA repair.
        Arch Biochem Biophys. 2011; 508: 152-158
        • Mukhtar H
        • Katiyar SK
        • Agarwal R.
        Green tea and skin—anticarcinogenic effects.
        Journal of Investigative Dermatology. 1994; 102: 3-7
        • Kim E
        • Hwang K
        • Lee J
        • et al.
        Skin protective effect of epigallocatechin gallate.
        Int J Mol Sci. 2018; 19: 173
        • Liu-Smith F
        • Meyskens FL.
        Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma.
        Mol Nutr Food Res. 2016; 60: 1264-1274
        • Zhang J
        • Lei Z
        • Huang Z
        • et al.
        Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity.
        Oncotarget. 2016; 7: 79557-79571
        • Nihal M
        • Ahmad N
        • Mukhtar H
        • Wood GS.
        Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma.
        Int J Cancer. 2005; 114: 513-521
        • Liao B
        • Ying H
        • Yu C
        • et al.
        (-)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice.
        Int J Pharm. 2016; 512: 22-31
        • Siddiqui IA
        • Bharali DJ
        • Nihal M
        • et al.
        Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo.
        Nanomedicine. 2014; 10: 1619-1626
        • Zheng W
        • Doyle TJ
        • Kushi LH
        • Sellers TA
        • Hong CP
        • Folsom AR.
        Tea consumption and cancer incidence in a prospective cohort study of postmenopausal women.
        Am J Epidemiol. 1996; 144: 175-182
        • Wu S
        • Han J
        • Song F
        • et al.
        Caffeine intake, coffee consumption, and risk of cutaneous malignant melanoma.
        Epidemiology. 2015; 26: 898-908
        • Li X
        • Yu C
        • Guo Y
        • et al.
        Association between tea consumption and risk of cancer: a prospective cohort study of 0.5 million Chinese adults.
        Eur J Epidemiol. 2019; 34: 753-763
        • Wang E
        • Liu Y
        • Xu C
        • Liu J.
        Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells.
        Food Nutr Res. 2017; 611325308
        • Yang L
        • Xian D
        • Xiong X
        • Lai R
        • Song J
        • Zhong J.
        Proanthocyanidins against oxidative stress: from molecular mechanisms to clinical applications.
        BioMed Research International. 2018; : 110
        • Vaid M
        • Singh T
        • Prasad R
        • Katiyar SK
        Bioactive proanthocyanidins inhibit growth and induce apoptosis in human melanoma cells by decreasing the accumulation of β-catenin.
        Int J Oncol. 2015; 48: 624-634
        • Vaid M
        • Singh T
        • Prasad R
        • Kappes JC
        • Katiyar SK.
        Therapeutic intervention of proanthocyanidins on the migration capacity of melanoma cells is mediated through PGE2 receptors and β-catenin signaling molecules.
        Am J Cancer Res. 2015; 5: 3325-3338
        • Nguyen TA
        • Friedman AJ.
        Curcumin: a novel treatment for skin-related disorders.
        J Drugs Dermatol. 2013; 12: 1131-1137
        • Faião-Flores F
        • Quincoces Suarez JA
        • Fruet AC
        • Maria-Engler SS
        • Pardi PC
        • Maria DA
        Curcumin analog DM-1 in monotherapy or combinatory treatment with dacarbazine as a strategy to inhibit in vivo melanoma progression.
        PLoS One. 2015; 10e0118702
        • Loch-Neckel G
        • Santos-Bubniak L
        • Mazzarino L
        • et al.
        Orally administered chitosan-coated polycaprolactone nanoparticles containing curcumin attenuate metastatic melanoma in the lungs.
        J Pharm Sci. 2015; 104: 3524-3534
        • Mirzaei H
        • Naseri G
        • Rezaee R
        • et al.
        Curcumin: a new candidate for melanoma therapy?.
        Int J Cancer. 2016; 139: 1683-1695
        • Song H
        • Hur I
        • Park H-J
        • et al.
        Selenium inhibits metastasis of murine melanoma cells through the induction of cell cycle arrest and cell death.
        Immune Netw. 2009; 9: 236-242
        • Song H
        • Kim J
        • Lee H-K
        • et al.
        Selenium inhibits migration of murine melanoma cells via down-modulation of IL-18 expression.
        Int Immunopharmacol. 2011; 11: 2208-2213
        • Liu Y-R
        • Sun B
        • Zhu G-H
        • et al.
        Selenium-lentinan inhibits tumor progression by regulating epithelial-mesenchymal transition.
        Toxicol Appl Pharmacol. 2018; 360: 1-8
        • Ferreira LM
        • Sari MHM
        • Azambuja JH
        • et al.
        Xanthan gum-based hydrogel containing nanocapsules for cutaneous diphenyl diselenide delivery in melanoma therapy.
        Invest New Drugs. 2020; 38: 662-674
        • Bergomi M
        • Pellacani G
        • Vinceti M
        • et al.
        Trace elements and melanoma.
        J Trace Elem Med Biol. 2005; 19: 69-73
        • Rayman MP
        • Winther KH
        • Pastor-Barriuso R
        • et al.
        Effect of long-term selenium supplementation on mortality: results from a multiple-dose, randomised controlled trial.
        Free Radic Biol Med. 2018; 127: 46-54
        • Caini S
        • Masala G
        • Saieva C
        • et al.
        Coffee, tea and melanoma risk: findings from the European Prospective Investigation into Cancer and Nutrition.
        Int J Cancer. 2017; 140: 2246-2255
        • Mitsiogianni M
        • Koutsidis G
        • Mavroudis N
        • et al.
        The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents.
        Antioxidants (Basel). 2019; 8: 106
        • Huang S-H
        • Hsu M-H
        • Hsu S-C
        • et al.
        Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways.
        Hum Exp Toxicol. 2014; 33: 270-283
        • Fuke Y
        • Shinoda S
        • Nagata I
        • et al.
        Preventive effect of oral administration of 6-(methylsulfinyl)hexyl isothiocyanate derived from wasabi (Wasabia japonica Matsum) against pulmonary metastasis of B16-BL6 mouse melanoma cells.
        Cancer Detect Prev. 2006; 30: 174-179