Advertisement

Nutrition and bullous diseases

      Abstract

      Although relatively uncommon, autoimmune bullous diseases carry the risk of increased mortality and can significantly impact quality of life. This group of diseases is broad and encompasses subepidermal conditions such as bullous pemphigoid, cicatricial pemphigoid, epidermolysis bullosa acquisita, dermatitis herpetiformis, and linear IgA bullous dermatosis, as well as intraepidermal conditions such as pemphigus and its variants. The pathophysiology of each condition is incompletely understood but broadly involves the formation of autoantibodies targeting skin adhesion proteins, a process that relies on a complex interplay between a dysregulated immune system, genetic predisposition, and environmental factors. We review the impact of nutrition on pathogenesis, clinical course, and treatment of various autoimmune bullous diseases.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Savin JA.
        International mortality from bullous diseases since 1950.
        Br J Dermatol. 1976; 94: 179-190
        • Risser J
        • Lewis K
        • Weinstock MA.
        Mortality of bullous skin disorders from 1979 through 2002 in the United States.
        Arch Dermatol. 2009; 145: 1005-1008
        • Sebaratnam DF
        • McMillan JR
        • Werth VP
        • et al.
        Quality of life in patients with bullous dermatoses.
        Clin Dermatol. 2012; 30: 103-107
        • Kridin K
        • Ludwig RJ.
        The growing incidence of bullous pemphigoid: overview and potential explanations.
        Front Med. 2018; : 220
        • Joly P.
        Incidence of bullous pemphigoid and pemphigus vulgaris.
        BMJ. 2008; 337: a209
        • Akarsu S
        • Dolas Özbagcivan Ö
        • et al.
        Possible triggering factors and comorbidities in newly diagnosed autoimmune bullous diseases.
        Turkish J Med Sci. 2017; 47: 832-840
        • Patel F
        • Wilken R
        • Patel F
        • et al.
        Pathophysiology of autoimmune bullous diseases: nature versus nurture.
        Indian J Dermatol. 2017; 62: 262-267
        • Schiavo AL
        • Ruocco E
        • Brancaccio G
        • et al.
        Bullous pemphigoid: etiology, pathogenesis, and inducing factors: facts and controversies.
        Clin Dermatol. 2013; 31: 391-399
        • Atarzadeh F
        • Daneshfard B
        • Dastgheib L
        • et al.
        Early description of diet-induced blistering skin diseases in medieval Persia: Avicenna's point of view.
        Skinmed. 2016; 14: 367-370
        • Kneiber D
        • Kowalski EH
        • Kridin K
        • et al.
        Gastrointestinal symptoms, gastrointestinal bleeding and the role of diet in patients with autoimmune blistering disease: a survey of the International Pemphigus and Pemphigoid Foundation.
        J Eur Acad Dermatol Venereol. 2019; 33: 1935-1940
        • Wertenteil S
        • Garg A
        • Strunk A
        • et al.
        Prevalence estimates for pemphigoid in the United States: a sex-adjusted and age-adjusted population analysis.
        J Amer Acad Dermatol. 2019; 80: 655-659
        • Langan SM
        • Smeeth L
        • Hubbard R
        • et al.
        Bullous pemphigoid and pemphigus vulgaris—incidence and mortality in the UK: population based cohort study.
        BMJ. 2008; 337: a180
        • Genovese G
        • Di Zenzo G
        • Cozzani E
        • et al.
        New insights into the pathogenesis of bullous pemphigoid: 2019 update.
        Front Immunol. 2019; : 1506
        • Peelen E
        • Knippenber S
        • Muris AH
        • et al.
        Effects of vitamin D on the peripheral adaptive immune system: a review.
        Autoimmun Rev. 2011; 10: 733-743
        • Adorini L
        • Penna G.
        Induction of tolerogenci dendritic cells by vitamin D receptor agonists.
        Handb Exp Pharmacol. 2009; 188: 251-273
        • Lemire JM
        • Adams JS
        Kermani-Arabi, et al. 1,25-Dihydroxyvitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro.
        J Immunol. 1985; 134: 3032-3035
        • Yamamoto C
        • Tamaki K
        • Nakano H
        • et al.
        Vitamin D3 inhibits expression of bullous pemphigoid antigen 1 through post-transcriptional mechanism without new protein synthesis.
        J Dermatol Sci. 2008; 50: 155-158
        • Tukaj S
        • Grüner D
        • Tukaj C
        • et al.
        Calcitriol exerts anti-inflammatory effects in keratinocytes treated with autoantibodies from a patient with bullous pemphigoid.
        J Eur Acad Dermatol Venereol. 2016; 30: 288-292
        • Marzano AV
        • Trevison V
        • Ellen-Vainicher C
        • et al.
        Evidence for vitamin D deficiency and increased prevalence of fractures in autoimmune bullous skin diseases.
        Br J Dermatol. 2012; 167: 688-691
        • Marzano AV
        • Trevisan V
        • Cairoli E
        • et al.
        Vitamin D and skeletal health in autoimmune bullous skin diseases: a case control study.
        Orphanet J Rare Dis. 2015; 10: 1-7
        • Ramagopalan SV
        • Goldacre R
        • Disanto G
        • et al.
        Hospital admissions for vitamin D related conditions and subsequent immune-mediated disease: record-linkage studies.
        BMC Med. 2013; 11: 171
        • Tukaj S
        • Eg Schmidt
        • Recke A
        • et al.
        Vitamin D status in patient with bullous pemphigoid.
        Br J Dermatol. 2013; 168: 873-874
        • Sarre ME
        • Annweiler C
        • Legrand E
        • et al.
        Association between bullous pemphigoid and hypovitaminosis D in older inpatients: results from a case-control study.
        Eur J Intern Med. 2016; 31: 25-28
        • Rzany B
        • Partscht K
        • Jung M
        • et al.
        Risk factors for lethal outcome in patients with bullous pemphigoid: low serum albumin level, high dosage of glucocorticosteroids, and old age.
        Arch Dermatol. 2002; 138: 903-908
        • Wohlrab J
        • Kreft D.
        Niacinamide: mechanisms of action and its topical use in dermatology.
        Skin Pharmacol Physiol. 2014; 27: 311-315
        • Wojnarowska F
        • Kirtschig G
        • Highet AS
        • et al.
        Guidelines for the management of bullous pemphigoid.
        Br J Dermatol. 2002; 147: 214-221
        • Shiohara J
        • Yoshida K
        • Hasegawa J
        • et al.
        Tetracycline and niacinamide control bullous pemphigoid but not pemphigus foliaceus when these conditions coexist.
        J Dermatol. 2018; 37: 657-661
        • Florez D
        • Sanchez-Aguilar J
        • Toribio A.
        Treatment of generalized bullous pemphigoid with erythromycin and nicotinamide.
        J Dermatol Treat. 2000; 11: 29-32
        • Berk MA
        • Lorincz AL.
        The treatment of bullous pemphigoid with tetracycline and niacinamide: a preliminary report.
        Arch Dermatol. 1986; 122: 670-674
        • Goon AJ
        • Tan SH
        • Khoo ISW
        • et al.
        Nicotinamide for the treatment of bullous pemphigold: our experience in Singapore.
        Singapore Med J. 2000; 41: 327-330
        • Hornschuh B
        • Hamm H
        • Wever S
        • et al.
        Treatment of 16 patients with bullous pemphigoid with oral tetracycline and niacinamide and topical clobetasol.
        J Amer Acad Dermatol. 1997; 36: 101-103
        • Kalinska-Bienias A
        • Kowalczyk E
        • Jagielski P
        • et al.
        Tetracycline, nicotinamide, and lesionally administered clobetasol as a therapeutic option to prednisone in patients with bullous pemphigoid: a comparative, retrospective analysis of 106 patients with long-term follow-up.
        Int J Dermatol. 2019; 58: 172-177
        • Fivenson DP
        • Breneman DL
        • Rosen GB
        • et al.
        Nicotinamide and tetracycline therapy of bullous pemphigoid.
        Arch Dermatol. 1994; 130: 753-758
        • Feliciani C
        • Joly P
        • Jonkman MF
        • et al.
        Management of bullous pemphigoid: the European Dermatology Forum consensus in collaboration with the European Academy of Dermatology and Venereology.
        Br J Dermatol. 2015; 172: 867-877
        • Atakan N
        • Tuzun J
        • Karaduman A.
        Dyshidrosiform pemphigoid induced by nickel in the diet.
        Contact Dermatitis. 1993; 29: 159-160
        • Cinotti E
        • Douchet C
        • Perrot JL
        • et al.
        Bullous pemphigoid in an infant with milk protein allergy.
        Br J Dermatol. 2013; 169: 191-192
        • Kluk J
        • Goulding JM
        • Bhat J
        • Finch TM.
        Drug-induced bullous pemphigoid: cases triggered by intravenous iodine and etanercept.
        Clin Exp Dermatol. 2011; : 36871-36873
        • Kumar V
        • Zane H
        • Kaul N.
        Serologic markers of gluten-sensitive enteropathy in bullous disease.
        Arch Dermatol. 1992; 128: 1474-1478
        • Economidou J
        • Avgerinou G
        • Tsiroyianni A
        • et al.
        Endomysium and antigliadin antibodies in dermatitis herpetiformis and other bullous disease.
        J Eur Acad Dermatol Venereol. 1998; 11: 184-185
        • Radford CF
        • Rauz S
        • Williams GP
        • et al.
        Incidence, presenting features, and diagnosis of cicatrising conjunctivitis in the United Kingdom.
        Eye (Lond). 2012; 26: 1199-1208
        • Bernard P
        • Vaillant L
        • Labeille B
        • et al.
        Incidence and distribution of subepidermal autoimmune bullous skin diseases in three French regions. Bullous Diseases French Study Group.
        Arch Dermatol. 1995; 131: 48-52
        • Bertram F
        • Brocker EB
        • Zillikens D
        • Schmidt E.
        Prospective analysis of the incidence of autoimmune bullous disorders in Lower Franconia, Germany.
        J Dtsch Dermatol Ges. 2009; 7: 434-440
        • Dharman S
        • Muthukrishnan A.
        Oral mucous membrane pemphigoid: two case reports with varied clinical presentation.
        J Indian Soc Periodontol. 2016; 20: 630-634
        • Xu HH
        • Werth VP
        • Parisi E
        • Sollecito TP.
        Mucous membrane pemphigoid.
        Dent Clin North Am. 2013; 57: 611-630
        • Sanchez PS
        • Domingo SD
        • Martin RD
        • et al.
        Esophageal cicatricial pemphigoid as an isolated involvement treated with mycophenolate mofetil.
        Case Rep Gastrointest Med. 2015; (620374): 1-4https://doi.org/10.1155/2015/620374
        • Santi CG
        • Gripp AC
        • Roselino AM
        • et al.
        Consensus on the treatment of autoimmune bullous dermatoses: bullous pemphigoid, mucous membrane pemphigoid and epidermolysis bullosa acquisita – Brazilian Society of Dermatology.
        An Bras Dermatol. 2019; 92: 33-47
        • Bergstrom L.
        Cicatricial pemphigoid of upper digestive and respiratory tracts.
        Clin Dermatol. 1987; 5: 36-42
        • Kridin K
        • Kneiber D
        • Kowalski EH
        • et al.
        Epidermolysis bullosa acquisita: a comprehensive review.
        Autoimmun Rev. 2019; 18: 786-795
        • Kasperkiewicz M
        • Orosz I
        • Abeck D
        • et al.
        Childhood epidermolysis bullosa acquisita with underlying coeliac disease.
        Acta Derm Venereol. 2015; 95: 1013-1014
        • Ito Y
        • Kasai H
        • Yoshida T
        • et al.
        Anti-type VII collagen autoantibodies, detected by enzyme-linked immunosorbent assay, fluctuate in parallel with clinical severity in patients with epidermolysis bullosa acquisita.
        J Dermatol. 2013; 40: 864-868
        • Hintner H
        • Schuler G
        • Fritsch P.
        Epidermolysis bullosa acquisita: diagnosis by optic immunofluorescent demonstration of junctional antigens and vitamin E treatment.
        Der Hautarzt. 1982; 33: 310-314
        • Rosten M.
        Vitamin E treatment of epidermolysis bullosa acquisita.
        Australas J Dermatol. 1976; 17: 52-53
        • Ayres S
        • Mihan R.
        Therapeutic value of large doses of vitamin E in epidermolysis bullosa acquisita.
        Australas J Dermatol. 1972; 13: 140
        • Nair VL
        • Ganga P.
        Epidermolysis bullosa acquisita.
        Indian J Dermatol Venereol Leprol. 1990; 56: 310-311
        • Harman KE
        • Whittam LR
        • Wakelin SH
        • Black MM.
        Severe, refractory epidermolysis bullosa acquisita complicated by an oesophageal stricture responding to intravenous immune globulin.
        Br J Dermatol. 1998; 139: 1126-1127
        • Reddy H
        • Shipman AR
        • Wojnarowska F.
        Epidermolysis bullosa acquisita and inflammatory bowel disease: a review of the literature.
        Clin Exp Dermaol. 2013; 38: 225-229
        • Chen M
        • O'Toole EA
        • Sanghavi J
        • et al.
        The epidermolysis bullosa acquisita antigen (type VII collagen) is present in human colon and patients with Crohn's disease have autoantibodies to type VII collagen.
        J Invest Dermatol. 2002; 118: 1059-1064
        • Iwata H
        • Vorobyev Koga H
        • et al.
        Meta-analysis of the clinical and immunopathological characteristics and treatment outcomes in epidermolysis bullosa acquisita patients.
        Orphanet J Rare Dis. 2018; 13: 153
        • Weisshof R
        • Chermesh I.
        Micronutrient deficiencies in inflammatory bowel disease.
        Curr Opin Clin Nutr Metab Care. 2015; 18: 576-581
        • Trpkovic A
        • Resanovic I
        • Stanimirovic J
        • et al.
        Oxidized low-density lipoprotein as a biomarker of cardiovascular disease.
        Crtic Rev Clin Lab Sci. 2015; 52: 70-85
        • Tukaj S
        • Bieber K
        • Witte M
        • et al.
        Calcitriol treatment ameliorates inflammation and blistering in mouse models of epidermolysis bullosa acquisita.
        J Invest Dermatol. 2018; 138: 301-309
        • Sitaru AG
        • Sesarman A
        • Mihai S
        • et al.
        T cells are required for the production of blister-inducing autoantibodies in experimental epidermolysis bullosa acquisita.
        J Immunol. 2010; 184: 1596-1603
        • Chiriac MT
        • Roesler J
        • Sindrilaru A
        • et al.
        NADPH oxidase is required for neutrophil-dependent autoantibody-induced tissue damage.
        J Pathol. 2007; 212: 56-65
        • Hietikko M
        • Hervonen K
        • Salmi T
        • et al.
        Disappearance of epidermal transglutaminase and IgA deposits from the papillary dermis of patients with dermatitis herpetiformis after a long-term gluten-free diet.
        Br J Dermatol. 2018; 178: e198-e201
        • Jericho H
        • Sansotta N
        • Guandalini S.
        Extraintestinal manifestations of celiac disease: effectiveness of the gluten-free diet.
        J Pediatr Gastroenterol Nutr. 2017; 65: 75-79
        • Sardy M
        • Karpati S
        • Merkl B
        • et al.
        Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis.
        J Exp Med. 2002; 195: 747-757
        • Salmi TT.
        Dermatitis herpetiformis.
        Clin Exp Dermatol. 2019; 44: 728-731
        • Karpati S.
        Dermatitis herpetiformis.
        Clin Dermatol. 2012; 30: 56-59
        • Hervonen K
        • Karell K
        • Holopainen P
        • et al.
        Concordance of dermatitis herpetiformis and celiac disease in monozygous twins.
        J Invest Dermatol. 2000; 115: 990-993
        • Salmi TT
        • Hervonen K
        • Kurppa K
        • et al.
        Celiac disease evolving into dermatitis herpetiformis in patients adhering to normal or gluten-free diet.
        Scand J Gastroenterol. 2015; 50: 387-392
        • Kaukinen K
        • Collin P
        • Maki M.
        Latent coeliac disease or coeliac disease beyond villous atrophy?.
        Gut. 2007; 56: 1339-1340
        • Sankari H
        • Hietikko M
        • Kurppa K
        • et al.
        Intestinal TG3- and TG2-specific plasma cell responses in dermatitis herpetiformis patients undergoing a gluten challenge.
        Nutrients. 2020; : 12
        • Van der Meer JB
        • Zeedijk N
        • van Voorst Vader PC
        • de Jong MC
        Role of elemental diet in dermatitis herpetiformis.
        Curr Probl Dermatol. 1991; 20: 176-179
        • Fedeles F
        • Murphy M
        • Rothe MJ
        • Grant-Kels JM.
        Nutrition and bullous skin diseases.
        Clin Dermatol. 2010; 28: 627-643
        • Reunala T
        • Salmi TT
        • Hervonen K
        • et al.
        IgA antiepidermal transglutaminase antibodies in dermatitis herpetiformis: a significant but not complete response to a gluten-free diet treatment.
        Br J Dermatol. 2015; 172: 1139-1141
        • Hervonen K
        • Salmi TT
        • Ilus T
        • et al.
        Dermatitis herpetiformis refractory to gluten-free dietary treatment.
        Acta Derm Venereol. 2016; 96: 82-86
        • Paek SY
        • Steinberg SM
        • Katz SI.
        Remission in dermatitis herpetiformis: a cohort study.
        Arch Dermatol. 2011; 147: 301-305
        • Sladden MJ
        • Johnston GA.
        Complete resolution of dermatitis herpetiformis with the Atkins’ diet.
        Br J Dermatol. 2006; 154: 565-566
        • Antiga E
        • Caproni M
        • Pierini I
        • et al.
        Gluten-free diet in patients with dermatitis herpetiformis: not only a matter of skin.
        Arch Dermatol. 2011; 147: 988-989
        • Reunala T
        • Collin P
        • Holm K
        • et al.
        Tolerance to oats in dermatitis herpetiformis.
        Gut. 1998; 43: 490-493
        • Parnell N
        • Ellis HJ
        • Ciclitria P.
        Absence of toxicity of oats in patients with dermatitis herpetiformis.
        N Eng J Med. 1998; 338: 1470-1471
        • From E
        • Thomsen K.
        Dermatitis herpetiformis: a case provoked by iodine.
        Br J Dermatol. 1974; 91: 221-224
        • Haffenden GP
        • Blenkinsopp WK
        • Ring NP
        • et al.
        The potassium iodide patch test in the dermatitis herpetiformis in relation to treatment with a gluten-free diet and dapsone.
        Br J Dermatol. 1980; 103: 313-317
        • Charlesworth EN
        • Backe JT
        • Garcia RL.
        Letter: iodide-induced immunofluorescence in dermatitis herpetiformis.
        Arch Dermatol. 1976; 112: 555
        • Jimenez A
        • Hull C
        • Zone J.
        Dermatitis herpetiformis resistant to dapsone due to dietary iodide ingestion.
        JAAD Case Rep. 2019; 5: 713-714
        • Taylor TB
        • Zone JJ.
        Sensitivity of transglutaminase 3 in the IgA aggregates in dermatitis herpetiformis skin to potassium iodide.
        J Invest Dermatol. 2018; 138: 2066-2068
        • Juhlin L
        • Edgvist LE
        • Ekman LG
        • et al.
        Blood glutathione-peroxidase levels in skin diseases: effect of selenium and vitamin E treatment.
        Acta Derm Venereol. 1982; 62: 211-214
        • Ljunghall K
        • Juhlin L
        • Edgvist LE
        • Plantin LO.
        Selenium, glutathione-peroxidase and dermatitis herpetiformis.
        Acta Derm Venereol. 1984; 64: 546-547
        • Prussick R
        • Ali M
        • Rosenthal D
        • Guyatt G.
        The protective effect of vitamin E on the hemolysis associated with dapsone treatment in patients with dermatitis herpetiformis.
        Arch Dermatol. 1992; 128: 210-213
        • Kelly JW
        • Scott J
        • Sandland M
        • et al.
        Vitamin E and dapsone-induced hemolysis.
        Arch Dermatol. 1984; 120: 1582-1584
        • Wang Y
        • Yang B
        • Zhou G
        • Zhang F.
        Two cases of dermatitis herpetiformis successfully treated with tetracycline and niacinamide.
        Acta Dermatovenerol Croat. 2018; 26: 273-275
        • Zemtsov A
        • Neldner KH.
        Successful treatment of dermatitis herpetiformis with tetracycline and nicotinamide in a patient unable to tolerate dapsone.
        J Am Acad Dermatol. 1993; 28: 505-506
        • Shah SA
        • Ormerod AD.
        Dermatitis herpetiformis effectively treated with heparin, tetracycline and nicotinamide.
        Clin Exp Dermatol. 2000; 25: 204-205
        • Schalock PC
        • Baughman RD.
        Flare of dermatitis herpetiformis associated with gluten in multivitamins.
        J Am Acad Dermatol. 2005; 52: 367
        • Wacklin P
        • Kaukinen K
        • Tuovinen E
        • et al.
        The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease.
        Inflamm Bowel Dis. 2013; 19: 934-941
        • Zone JJ.
        Clinical spectrum, pathogenesis and treatment of linear IgA bullous dermatosis.
        J Dermatol. 2001; 28: 651-653
        • DeFranchis R
        • Primignani M
        • Cipolla M
        • et al.
        Small-bowel involvement in dermatitis herpetiformis and in linear-IgA bullous dermatosis.
        J Clin Gastroenterol. 1983; 5: 429-436
        • Lawley TJ
        • Strober W
        • Yaoita H
        • Katz SI.
        Small intestinal biopsies and HLA types in dermatitis herpetiformis patients with granular and linear IgA skin deposits.
        J Invest Dermatol. 1980; 74: 9-12
        • Egan CA
        • Smith EP
        • Taylor TB
        • et al.
        Linear IgA bullous dermatosis responsive to a gluten-free diet.
        Am J Gastroenterol. 2001; 96: 1927-1929
        • Cui YX
        • Yang BQ
        • Zhou GZ
        • Zhang FR.
        Childhood linear IgA bullous dermatosis successfully treated with oral nicotinamide.
        Clin Exp Dermatol. 2016; 41: 816-818
        • Shan XF
        • Zhang FR
        • Tian HQ
        • et al.
        A case of linear IgA dermatosis successfully treated with tetracycline and niacinamide.
        Int J Dermatol. 2016; 55: e216-e217
        • Yomada M
        • Komai A
        • Hashimato T.
        Sublamina densa-type linear IgA bullous dermatosis successfully treated with oral tetracycline and niacinamide.
        Br J Dermatol. 1999; 141: 608-609
        • People D
        • Fivenson DP.
        Linear IgA bullous dermatosis: successful treatment with tetracycline and nicotinamide.
        J Am Acad Dermatol. 1992; 26: 498-499
        • Chaffins ML
        • Collison D
        • Fivenson DP.
        Treatment of pemphigus and linear IgA dermatosis with nicotinamide and tetracycline: a review of 13 cases.
        J Am Acad Dermatol. 1993; 28: 998-1000
        • Ruocco V
        • Ruocco E
        • Lo Schiavo A
        • et al.
        Pemphigus: etiology, pathogenesis, and inducing or triggering factors: facts and controversies.
        Clin Dermatol. 2013; 31: 374-381
        • Tavakolpour S
        • Daneshpazooh M
        • Mahmoudi HR
        • Balighi K.
        The dual nature of retinoic acid in pemphigus and its therapeutic potential: special focus on all-trans retinoic acid.
        Int Immunopharmacol. 2016; 36: 180-186
        • Rizzo C
        • Fotino M
        • Zhang Y
        • et al.
        Direct characterization of human T cells in pemphigus vulgaris reveals elevated autoantigen-specific Th2 activity in association with active disease.
        Clin Exp Dermatol. 2005; 30: 535-540
        • Pino-Lagos K
        • Benson MJ
        • Noelle RJ.
        Retinoic acid in the immune system.
        Ann N Y Acad Sci. 2008; 1143: 170-187
        • Gruss C
        • Zillikens D
        • Hashimoto T
        • et al.
        Rapid response of IgA pemphigus of subcorneal pustular dermatosis type to treatment with isotretinoin.
        J Am Acad Dermatol. 2000; 43: 923-926
        • Diker-Cohen T
        • Koren R
        • Ravid A.
        Programmed cell death of stressed keratinocytes and its inhibition by vitamin D: the role of death and survival signaling pathways.
        Apoptosis. 2006; 11: 519-534
        • El-Komy MH
        • Samir N
        • Shaker OG.
        Estimation of vitamin D levels in patients with pemphigus vulgaris.
        J Eur Acad Dermatol Venereol. 2014; 28: 859-863
        • Zarei M
        • Javanbakht MH
        • Chams-Davatchi C
        • et al.
        Evaluation of vitamin D status in newly diagnosed pemphigus vulgaris patients.
        Iran J Public Health. 2014; 43: 1544-1549
        • Joshi N
        • Minz RW
        • Anand S
        • et al.
        Vitamin D deficiency and lower TGF-B/IL-17 ratio in a North Indian cohort of pemphigus vulgaris.
        BMC Res Notes. 2014; 7: 536
        • Moravvej H
        • Mozafari N
        • Younespour S.
        Serum 25-hydroxy vitamin D level in patients with pemphigus and its association with disease severity.
        Clin Exp Dermatol. 2016; 41: 142-147
        • Arantes DAC
        • Guimaraes JM
        • Batista AC.
        Therapeutic success of vitamin D replacement in oral pemphigus vulgaris: a case report.
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2018; 126: e52
        • DeHoratius DM
        • Sperber BR
        • Werth VP.
        Glucocorticoids in the treatment of bullous disease.
        Dermatol Ther. 2003; 15: 298-310
        • Buckley L
        • Guyatt G
        • Fink HA
        • et al.
        2017 American College of Rheumatology Guideline for the prevention and treatment of glucocorticoid-induced osteoporosis.
        Arthritis Care Res (Hoboken. 2017; 69: 1095-1110
        • Von Kockrtiz A
        • Stander S
        • Zeidler C
        • et al.
        Successful monotherapy of pemphigus vegetans with minocycline and nicotinamide.
        J Eur Acad Dermatol Venereol. 2017; 31: 85-88
        • Sawai T
        • Kitazawa K
        • Danno K
        • et al.
        Pemphigus vegetans with oesophageal involvement: successful treatment with minocycline and nicotinamide.
        Br J Dermatol. 1995; 132: 668-670
        • McCarty M
        • Fivenson D.
        Two decades of using the combination of tetracycline derivatives and niacinamide as steroid-sparing agents in the management of pemphigus: defining a niche for these low toxicity agents.
        J Amer Acad Dermatol. 2014; 71: 475-479
        • Brenner S
        • Mashiah J.
        Autoimmune blistering diseases in children: signposts in the process of evaluation.
        Clin Dermatol. 2000; 18: 711-724
        • Javanbakht M
        • Daneshpazhooh M
        • Chams-Davatchi C
        • et al.
        Serum selenium, zinc, and copper in early diagnosed patients with pemphigus vulgaris.
        Iran J Public Health. 2012; 41: 105-109
        • Yazdanpanah MJ
        • Ghayour-Mobarhan M
        • Taji A
        • et al.
        Serum zinc and copper status in Iranian patients with pemphigus vulgaris.
        Int J Dermatol. 2011; 50: 1343-1346
        • Brenner S
        • Goldberg I.
        Drug-induced pemphigus.
        Clin Dermatol. 2011; 29: 455-457
        • Tur E
        • Brenner S.
        Diet and pemphigus: in pursuit of exogenous factors in pemphigus and fogo selvagem.
        Arch Dermatol. 1998; 134: 1406-1410
        • Brenner S
        • Ruocco V
        • Wolf R
        • et al.
        Pemphigus and dietary factors: in vitro acantholysis by allyl compounds of the genus Allium.
        Dermatology. 1995; 190: 197-202
        • Ruocco V
        • Brenner S
        • Lombardi ML.
        A case of diet-related pemphigus.
        Dermatology. 1996; 192: 373-374
        • Chorzelski TP
        • Hashimoto T
        • Jablonska S
        • et al.
        Can pemphigus vulgaris be induced by nutritional factors?.
        Eur J Dermatol. 1996; 6: 284-286
        • Ruocco V
        • Brenner S
        • Ruocco E.
        Pemphigus and diet: does a link exist?.
        Int J Dermatol. 2001; 40: 161-163
        • Newby CS
        • Barr RM
        • Greaves MW
        • Mallet AI.
        Cytokine release and cytotoxicity in human keratinocytes and fibroblasts induced by phenols and sodium dodecyl sulfate.
        J Invet Dermatol. 2000; 115: 292-298
        • Feliciani C
        • Toto P
        • Amerio P
        • et al.
        In vitro and in vivo expression of interleukin-1alpha and tumor necrosis factor-alpha mRNA in pemphigus vulgaris: interleukin-1alphs and tumor necrosis factor-alpha are involved in acantholysis.
        J Invest Dermatol. 2000; 114: 71-77
        • Feliciani C
        • Ruocco E
        • Zampetti A
        • et al.
        Tannic acid induces in vitro acantholysis of keratinocytes via IL-1alpha and TNF-alpha.
        Int J Immunopathol Pharmacol. 2007; 20: 289-299
        • Tur E
        • Brenner S.
        The role of the water system as an exogenous factor in pemphigus.
        Int J Dermatol. 1997; 36: 810-816
        • Caldarola G
        • Feliciani C.
        A glass of red wine to keep vascular disease at bay, but what about pemphigus vulgaris.
        Expert Rev Clin Immunol. 2011; 7: 187-191
        • Brenner S
        • Ruocco V
        • Ruocco E
        • et al.
        In vitro tannin acantholysis.
        Int J Dermatol. 2000; 39: 738-742
        • Robledo MA.
        Chronic methyl mercury poisoning may trigger endemic pemphigus foliaceus “fogo selvage.
        Med Hypotheses. 2012; 78: 60-66
        • Qian Y
        • Jeong JS
        • Maldonado M
        • et al.
        Cutting edge: Brazilian pemphigus foliaceus anti-desmoglein 1 autoantibodies cross-react with sand fly salivary LJM11 antigen.
        J Immunol. 2012; 189: 1535-1539
        • Lin L
        • Moran TP
        • Peng B
        • et al.
        Walnut antigens can trigger autoantibody development in patients with pemphigus vulgaris through a “hit-and-run” mechanism.
        J Allergy Clin Immunol. 2019; 144: 720-728