Advertisement
Research Article| Volume 35, ISSUE 2, P118-129, March 2017

Understanding the role of Propionibacterium acnes in acne vulgaris: The critical importance of skin sampling methodologies

      Abstract

      Acne vulgaris is a chronic inflammatory skin condition classified by the Global Burden of Disease Study as the eighth most prevalent disease worldwide. The pathophysiology of the condition has been extensively studied, with an increase in sebum production, abnormal keratinization of the pilosebaceous follicle, and an inflammatory immune response all implicated in its etiology. One of the most disputed points, however, is the role of the gram-positive anaerobic bacterium Propionibacterium acnes in the development of acne, particularly when this organism is also found in normal sebaceous follicles of healthy skin. Against this background, we now describe the different sampling strategies that have been adopted for qualitative and quantitative study of P acnes within intact hair follicles of the skin and discuss the strengths and weaknesses of such methodologies for investigating the role of P acnes in the development of acne.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Williams H.C.
        • Dellavalle R.P.
        • Garner S.
        Acne vulgaris.
        Lancet. 2012; 379: 361-372
        • Bhate K.
        • Williams H.C.
        Epidemiology of acne vulgaris.
        Br J Dermatol. 2013; 168: 474-485
        • Dreno B.
        • Thiboutot D.
        • Layton A.M.
        • et al.
        Large-scale international study enhances understanding of an emerging acne population: Adult females.
        J Eur Acad Dermatol Venereol. 2015; 29: 1096-1106
        • Hay R.J.
        • Johns N.E.
        • Williams H.C.
        • et al.
        The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions.
        J Invest Dermatol. 2014; 134: 1527-1534
        • Kligman A.M.
        An overview of acne.
        J Invest Dermatol. 1974; 62: 268-287
        • Tanghetti E.A.
        The role of inflammation in the pathology of acne.
        J Clin Aesthet Dermatol. 2013; 6: 27-35
        • Dessinioti C.
        • Katsambas A.D.
        The role of Propionibacterium acnes in acne pathogenesis: Facts and controversies.
        Clin Dermatol. 2010; 28: 2-7
        • Shaheen B.
        • Gonzalez M.
        A microbial aetiology of acne: What is the evidence?.
        Br J Dermatol. 2011; 165: 474-485
        • Otberg N.
        • Richter H.
        • Schaefer H.
        • et al.
        Variations of hair follicle size and distribution in different body sites.
        J Invest Dermatol. 2004; 122: 14-19
        • Gordon C.R.
        • Zor F.
        • Siemionow M.
        Skin area quantification in preparation for concomitant upper extremity and face transplantation: A cadaver study and literature review.
        Transplantation. 2011; 91: 1050-1056
        • Ramli R.
        • Malik A.S.
        • Hani A.F.
        • et al.
        Acne analysis, grading and computational assessment methods: An overview.
        Skin Res Technol. 2012; 18: 1-14
        • Johnson J.L.
        • Cummins C.S.
        Cell wall composition and deoxyribonucleic acid similarities among the anaerobic coryneforms, classical propionibacteria, and strains of Arachnia propionica.
        J Bacteriol. 1972; 109: 1047-1066
        • Webster G.F.
        • Cummins C.S.
        Use of bacteriophage typing to distinguish Propionibacterium acne types I and II.
        J Clin Microbiol. 1978; 7: 84-90
        • McDowell A.
        • Valanne S.
        • Ramage G.
        • et al.
        Propionibacterium acnes types I and II represent phylogenetically distinct groups.
        J Clin Microbiol. 2005; 43: 326-334
        • McDowell A.
        • Perry A.L.
        • Lambert P.A.
        • et al.
        A new phylogenetic group of Propionibacterium acnes.
        J Med Microbiol. 2008; 57: 218-224
        • Lomholt H.B.
        • Kilian M.
        Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne.
        PLoS One. 2010; 5: e12277
        • McDowell A.
        • Barnard E.
        • Nagy I.
        • et al.
        An expanded multilocus sequence typing scheme for Propionibacterium acnes: Investigation of ‘pathogenic’, ‘commensal’ and antibiotic resistant strains.
        PLoS One. 2012; 7: e41480
        • Fitz-Gibbon S.
        • Tomida S.
        • Chiu B.H.
        • et al.
        Propionibacterium acnes strain populations in the human skin microbiome associated with acne.
        J Invest Dermatol. 2013; 133: 2152-2160
        • Scholz C.F.
        • Jensen A.
        • Lomholt H.B.
        • et al.
        A novel high-resolution single locus sequence typing scheme for mixed populations of Propionibacterium acnes in vivo.
        PLoS One. 2014; 9: e104199
        • Dekio I.
        • Culak R.
        • Misra R.
        • et al.
        Dissecting the taxonomic heterogeneity within Propionibacterium acnes: Proposal for Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov.
        Int J Syst Evol Microbiol. 2015; 65: 4776-4787
        • Valanne S.
        • McDowell A.
        • Ramage G.
        • et al.
        CAMP factor homologues in Propionibacterium acnes: A new protein family differentially expressed by types I and II.
        Microbiology. 2005; 151: 1369-1379
        • McDowell A.
        • Nagy I.
        • Magyari M.
        • et al.
        The opportunistic pathogen Propionibacterium acnes: Insights into typing, human disease, clonal diversification and CAMP factor evolution.
        PLoS One. 2013; 8: e70897
        • McDowell A.
        • Gao A.
        • Barnard E.
        • et al.
        A novel multilocus sequence typing scheme for the opportunistic pathogen Propionibacterium acnes and characterization of type I cell surface-associated antigens.
        Microbiology. 2011; 157: 1990-2003
        • Johnson T.
        • Kang D.
        • Barnard E.
        • et al.
        Strain-level differences in porphyrin production and regulation in Propionibacterium acnes elucidate disease associations.
        mSphere. 2016; 1 (e00023-15)
        • Brzuszkiewicz E.
        • Weiner J.
        • Wollherr A.
        • et al.
        Comparative genomics and transcriptomics of Propionibacterium acnes.
        PLoS One. 2011; 6: e21581
        • Tomida S.
        • Nguyen L.
        • Chiu B.H.
        • et al.
        Pan-genome and comparative genome analyses of Propionibacterium acnes reveal its genomic diversity in the healthy and diseased human skin microbiome.
        MBio. 2013; 4: e00003-e00013
        • Scholz C.F.
        • Bruggemann H.
        • Lomholt H.B.
        • et al.
        Genome stability of Propionibacterium acnes: A comprehensive study of indels and homopolymeric tracts.
        Sci Rep. 2016; 6: 20662
        • Bruggemann H.
        • Lomholt H.B.
        • Kilian M.
        The flexible gene pool of Propionibacterium acnes.
        Mobile Genet Elem. 2012; 2: 145-148
        • Bruggemann H.
        • Lomholt H.B.
        • Tettelin H.
        • et al.
        CRISPR/cas loci of type II Propionibacterium acnes confer immunity against acquisition of mobile elements present in type I P. acnes.
        PLoS One. 2012; 7: e34171
        • Kasimatis G.
        • Fitz-Gibbon S.
        • Tomida S.
        • et al.
        Analysis of complete genomes of Propionibacterium acnes reveals a novel plasmid and increased pseudogenes in an acne associated strain.
        Biomed Res Int. 2013; 2013: 918320
        • Holland C.
        • Mak T.N.
        • Zimny-Arndt U.
        • et al.
        Proteomic identification of secreted proteins of Propionibacterium acnes.
        BMC Microbiol. 2010; 10: 230
        • Niazi S.A.
        • Clarke D.
        • Do T.
        • et al.
        Propionibacterium acnes and Staphylococcus epidermidis isolated from refractory endodontic lesions are opportunistic pathogens.
        J Clin Microbiol. 2010; 48: 3859-3869
        • Lodes M.J.
        • Secrist H.
        • Benson D.R.
        • et al.
        Variable expression of immunoreactive surface proteins of Propionibacterium acnes.
        Microbiology. 2006; 152: 3667-3681
        • Tilles G.
        Acne pathogenesis: History of concepts.
        Dermatology. 2014; 229: 1-46
        • Dreno B.
        • Gollnick H.P.
        • Kang S.
        • et al.
        Understanding innate immunity and inflammation in acne: Implications for management.
        J Eur Acad Dermatol Venereol. 2015; 29: 3-11
        • Suh D.H.
        • Kwon H.H.
        What’s new in the physiopathology of acne?.
        Br J Dermatol. 2015; 172: 13-19
        • Dreno B.
        The changing faces of acne.
        Br J Dermatol. 2015; 172: 1-2
        • Beylot C.
        • Auffret N.
        • Poli F.
        • et al.
        Propionibacterium acnes: An update on its role in the pathogenesis of acne.
        J Eur Acad Dermatol Venereol. 2014; 28: 271-278
        • Harvey A.
        • Huynh T.T.
        Inflammation and acne: Putting the pieces together.
        J Drugs Dermatol. 2014; 13: 459-463
        • Williamson P.
        • Kligman A.M.
        A new method for the quantitative investigation of cutaneous bacteria.
        J Invest Dermatol. 1965; 45: 498-503
        • McGinley K.J.
        • Webster G.F.
        • Leyden J.J.
        Regional variations of cutaneous propionibacteria.
        Appl Environ Microbiol. 1978; 35: 62-66
        • Jahns A.C.
        • Lundskog B.
        • Ganceviciene R.
        • et al.
        An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: A case-control study.
        Br J Dermatol. 2012; 167: 50-58
        • Grice E.A.
        • Segre J.A.
        The skin microbiome.
        Nat Rev. 2011; 9: 244-253
        • Mollerup S.
        • Friis-Nielsen J.
        • Vinner L.
        • et al.
        Propionibacterium acnes: Disease-causing agent or common contaminant? Detection in diverse patient samples by next-generation sequencing.
        J Clin Microbiol. 2016; 54: 980-987
        • Alexeyev O.A.
        • Jahns A.C.
        Sampling and detection of skin Propionibacterium acnes: Current status.
        Anaerobe. 2012; 18: 479-483
        • Gehse M.
        • Hoffler U.
        • Gloor M.
        • et al.
        Propionibacteria in patients with acne vulgaris and in healthy persons.
        Arch Dermatol Res. 1983; 275: 100-104
        • Panpradist N.
        • Toley B.J.
        • Zhang X.
        • et al.
        Swab sample transfer for point-of-care diagnostics: Characterization of swab types and manual agitation methods.
        PLoS One. 2014; 9: e105786
        • Harry K.
        • Turner J.
        • Madhusudhan K.
        Comparison of physical characteristics and collection and elution performance of clinical swabs.
        Afr J Microbiol Res. 2013; 7: 4039-4048
        • Keyworth N.
        • Millar M.R.
        • Holland K.T.
        Swab-wash method for quantitation of cutaneous microflora.
        J Clin Microbiol. 1990; 28: 941-943
        • Pinkus H.
        Examination of the epidermis by the strip method of removing horny layers. I. Observations on thickness of the horny layer, and on mitotic activity after stripping.
        J Invest Dermatol. 1951; 16: 383-386
        • Updegraff D.M.
        A cultural method of quantitatively studying the microorganisms in the skin.
        J Invest Dermatol. 1964; 43: 129-137
        • Holland K.T.
        • Roberts C.D.
        A technique for sampling microorganisms from the pilo-sebaceous ducts.
        J Appl Bacteriol. 1974; 37: 289-296
        • Forster M.
        • Bolzinger M.A.
        • Rovere M.R.
        • et al.
        Confocal Raman microspectroscopy for evaluating the stratum corneum removal by 3 standard methods.
        Skin Pharmacol Physiol. 2011; 24: 103-112
        • Dossi M.
        • Storti G.
        • Moscatelli D.
        Synthesis of poly(alkyl cyanoacrylates) as biodegradable polymers for drug delivery applications.
        Macromol Symp. 2010; 289: 124-128
        • Plewig G.
        Follicular keratinization.
        J Invest Dermatol. 1974; 62: 308-320
        • Miura Y.
        • Ishige I.
        • Soejima N.
        • et al.
        Quantitative PCR of Propionibacterium acnes DNA in samples aspirated from sebaceous follicles on the normal skin of subjects with or without acne.
        J Med Dent Sci. 2010; 57: 65-74
        • Craft N.
        • Li H.
        Response to the commentaries on the paper: Propionibacterium acnes strain populations in the human skin microbiome associated with acne.
        J Invest Dermatol. 2013; 133: 2295-2297
        • Puhvel S.M.
        • Reisner R.M.
        • Amirian D.A.
        Quantification of bacteria in isolated pilosebaceous follicles in normal skin.
        J Invest Dermatol. 1975; 65: 525-531
        • Kellum R.E.
        Isolation of human sebaceous glands.
        Arch Dermatol. 1966; 93: 610-612
        • Imamura S.
        • Pochi P.E.
        • Strauss J.S.
        • et al.
        The localization and distribution of Corynebacterium acnes and its antigens in normal skin and in lesions of acne vulgaris.
        J Invest Dermatol. 1969; 53: 143-150
        • Amann R.
        • Fuchs B.M.
        Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.
        Nat Rev. 2008; 6: 339-348
        • Moter A.
        • Gobel U.B.
        Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms.
        J Microbiol Methods. 2000; 41: 85-112
        • Alexeyev O.A.
        • Lundskog B.
        • Ganceviciene R.
        • et al.
        Pattern of tissue invasion by Propionibacterium acnes in acne vulgaris.
        J Dermatol Sci. 2012; 67: 63-66
        • Jahns A.C.
        • Alexeyev O.A.
        Three dimensional distribution of Propionibacterium acnes biofils in human skin.
        Exp Dermatol. 2014; 23: 687-689
        • Alexeyev O.A.
        Bacterial landscape of human skin: Seeing the forest for the trees.
        Exp Dermatol. 2013; 22: 443-446
        • Lorenz M.G.
        • Wackernagel W.
        Bacterial gene transfer by natural genetic transformation in the environment.
        Microbiol Rev. 1994; 58: 563-602
        • Trampuz A.
        • Piper K.E.
        • Jacobson M.J.
        • et al.
        Sonication of removed hip and knee prostheses for diagnosis of infection.
        N Engl J Med. 2007; 357: 654-663
        • Numata S.
        • Akamatsu H.
        • Akaza N.
        • et al.
        Analysis of facial skin-resident microbiota in Japanese acne patients.
        Dermatology. 2014; 228: 86-92
        • McGinley K.J.
        • Webster G.F.
        • Ruggieri M.R.
        • et al.
        Regional variations in density of cutaneous propionibacteria: Correlation of Propionibacterium acnes populations with sebaceous secretion.
        J Clin Microbiol. 1980; 12: 672-675
        • Akaza N.
        • Akamatsu H.
        • Numata S.
        • et al.
        Microorganisms inhabiting follicular contents of facial acne are not only Propionibacterium but also Malassezia spp.
        J Dermatol. 2016; 43: 906-911
        • Leyden J.J.
        • Mcginley K.J.
        • Mills O.H.
        • et al.
        Propionibacterium levels in patients with and without acne-vulgaris.
        J Invest Dermatol. 1975; 65: 382-384
        • Kishishita M.
        • Ushijima T.
        • Ozaki Y.
        • et al.
        Biotyping of Propionibacterium acnes isolated from normal human facial skin.
        Appl Environ Microbiol. 1979; 38: 585-589
        • Higaki S.
        • Kitagawa T.
        • Kagoura M.
        • et al.
        Correlation between Propionibacterium acnes biotypes, lipase activity and rash degree in acne patients.
        J Dermatol. 2000; 27: 519-522
        • Giannopoulos L.
        • Papaparaskevas J.
        • Refene E.
        • et al.
        MLST typing of antimicrobial-resistant Propionibacterium acnes isolates from patients with moderate to severe acne vulgaris.
        Anaerobe. 2015; 31: 50-54
        • Gloor M.
        • Franke M.
        On the propionibacteria in the pilosebaceous ducts of uninvolved skin of acne patients.
        Arch Dermatol Res. 1978; 262: 125-129
        • Lavker R.M.
        • Leyden J.J.
        • McGinley K.J.
        The relationship between bacteria and the abnormal follicular keratinization in acne vulgaris.
        J Invest Dermatol. 1981; 77: 325-330
        • Till A.E.
        • Goulden V.
        • Cunliffe W.J.
        • et al.
        The cutaneous microflora of adolescent, persisten and late-onset acne patients does not differ.
        Br J Dermatol. 2000; 142: 885-892
        • Bek-Thomsen M.
        • Lomholt H.B.
        • Kilian M.
        Acne is not associated with yet-uncultured bacteria.
        J Clin Microbiol. 2008; 46: 3355-3360
        • Bek-Thomsen M.
        • Lomholt H.B.
        • Scavenius C.
        • et al.
        Proteome analysis of human sebaceous follicle infundibula extracted from healthy and acne-affected skin.
        PLoS One. 2014; 9: e107908
        • Marples R.R.
        • McGinley K.J.
        • Mills O.H.
        Microbiology of comedones in acne vulgaris.
        J Invest Dermatol. 1973; 60: 80-83
        • Smith M.A.
        • Waterworth P.M.
        The bacteriology of acne vulgaris in relation to its treatment with antibiotics.
        Br J Dermatol. 1961; 73: 152-159
        • Ganor S.
        • Sacks T.G.
        A comparison of the flora of the comedones of acne vulgaris and comedones in elderly people.
        Dermatologica. 1969; 138: 1-9
        • Shehadeh N.H.
        • Kligman A.M.
        The bacteriology of acne.
        Arch Dermatol. 1963; 88: 829-831
        • Nishijima S.
        • Kurokawa I.
        • Katoh N.
        • et al.
        The bacteriology of acne vulgaris and antimicrobial susceptibility of Propionibacterium acnes and Staphylococcus epidermidis isolated from acne lesions.
        J Dermatol. 2000; 27: 318-323
        • Leeming J.P.
        • Holland K.T.
        • Cunliffe W.J.
        The pathologic and ecological significance of microorganisms colonizing acne vulgaris comedones.
        J Med Microbiol. 1985; 20: 11-16
        • Cunliffe W.J.
        • Holland D.B.
        • Jeremy A.
        Comedone formation: Etiology, clinical presentation, and treatment.
        Clin Dermatol. 2004; 22: 367-374
        • Puhvel S.M.
        • Amirian D.A.
        Bacterial flora of comedones.
        Br J Dermatol. 1979; 101: 543-548
        • Leeming J.P.
        • Holland K.T.
        • Cuncliffe W.J.
        The microbial colonization of inflamed acne vulgaris lesions.
        Br J Dermatol. 1988; 118: 203-208
        • Costerton J.W.
        • Stewart P.S.
        • Greenberg E.P.
        Bacterial biofilms: A common cause of persistent infections.
        Science. 1999; 284: 1318-1322
        • Watnick P.
        • Kolter R.
        Biofilm, city of microbes.
        J Bacteriol. 2000; 182: 2675-2679
        • Olsen I.
        Biofilm-specific antibiotic tolerance and resistance.
        Eur J Clin Microbiol Infect Dis. 2015; 34: 877-886
        • Jolivet-Gougeon A.
        • Bonnaure-Mallet M.
        Biofilms as a mechanism of bacterial resistance.
        Drug Discov Today Technol. 2014; 11: 49-56
        • Høiby N.
        • Bjarnsholt T.
        • Givskov M.
        • et al.
        Antiobiotic resistance of bacterial biofilms.
        Int J Antimicrob Agents. 2010; 35: 322-332
        • Conlon B.P.
        • Rowe S.E.
        • Lewis K.
        Persister cells in biofilm associated infections.
        Adv Exp Med Biol. 2015; 831: 1-9
        • Parsek M.R.
        • Singh P.K.
        Bacterial biofilms: An emerging link to disease pathogenesis.
        Annu Rev Microbiol. 2003; 57: 677-701
        • Mihai M.M.
        • Holban A.M.
        • Giurcaneanu C.
        • et al.
        Microbial biofilms: Impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections.
        Curr Top Med Chem. 2015; 15: 1552-1576
        • Vlassova N.
        • Han A.
        • Zenilman J.M.
        • et al.
        New horizons for cutaneous microbiology: The role of biofilms in dermatologic disease.
        Br J Dermatol. 2011; 165: 751-759
        • Tunney M.M.
        • Patrick S.
        • Curran M.D.
        • et al.
        Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16 S rRNA gene.
        J Clin Microbiol. 1999; 37: 3281-3290
        • Ramage G.
        • Tunney M.M.
        • Patrick S.
        • et al.
        Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials.
        Biomaterials. 2003; 24: 3221-3227
        • Bruggemann H.
        • Henne A.
        • Hoster F.
        • et al.
        The complete genome sequence of Propionibacterium acnes, a commensal of human skin.
        Science. 2004; 305: 671-673
        • Bruggemann H.
        Insights in the pathogenic potential of Propionibacterium acnes from its complete genome.
        Semin Cutan Med Surg. 2005; 24: 67-72
        • Bayston R.
        • Ashraf W.
        • Barker-Davies R.
        • et al.
        Biofilm formation by Propionibacterium acnes on biomaterials in vitro and in vivo: Impact on diagnosis and treatment.
        J Biomed Mater Res A. 2007; 81: 705-709
        • Bjerkan G.
        • Witso E.
        • Bergh K.
        Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro.
        Acta Orthop. 2009; 80: 245-250
        • Coenye T.
        • Brackman G.
        • Rigole P.
        • et al.
        Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds.
        Phytomedicine. 2012; 19: 409-412
        • Tunney M.M.
        • Dunne N.
        • Einarsson G.
        • et al.
        Biofilm formation by bacteria isolated from retrieved failed prosthetic hip implants in an in vitro model of hip arthroplasty antibiotic prophylaxis.
        J Orthop Res. 2007; 25: 2-10
        • Coenye T.
        • Peeters E.
        • Nelis H.J.
        Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors.
        Res Microbiol. 2007; 158: 386-392
        • Jahns A.C.
        • Lundskog B.
        • Berg J.
        • et al.
        Microbiology of folliculitis: A histological study of 39 cases.
        APMIS. 2014; 122: 25-32
        • Jahns A.C.
        • Lundskog B.
        • Nosek D.
        • et al.
        Microbiology of folliculitis decalvans: A histological study of 37 patients.
        J Eur Acad Dermatol Venereol. 2015; 29: 1025-1026
        • Jahns A.C.
        • Killasli H.
        • Nosek D.
        • et al.
        Microbiology of hidradenitis suppurativa (acne inversa): A histological study of 27 patients.
        APMIS. 2014; 122: 804-809
        • Graham G.M.
        • Farrar M.D.
        • Cruse-Sawyer J.E.
        • et al.
        Proinflammatory cytokine production by human keratinocytes stimulated with Propionibacterium acnes and P. acnes GroEL.
        Br J Dermatol. 2004; 150: 421-428
        • Ingham E.
        • Eady E.A.
        • Goodwin C.E.
        • et al.
        Pro-inflammatory levels of interleukin-1 alpha-like bioactivity are present in the majority of open comedones in acne vulgaris.
        J Invest Dermatol. 1992; 98: 895-901
        • Walters C.E.
        • Ingham E.
        • Eady E.A.
        • et al.
        In vitro modulation of keratinocyte-derived interleukin-1 alpha (IL-1 alpha) and peripheral blood mononuclear cell-derived IL-1 beta release in response to cutaneous commensal microorganisms.
        Infect Immun. 1995; 63: 1223-1228
        • Jeremy A.H.
        • Holland D.B.
        • Roberts S.G.
        • et al.
        Inflammatory events are involved in acne lesion initiation.
        J Invest Dermatol. 2003; 121: 20-27
        • Agak G.W.
        • Qin M.
        • Nobe J.
        • et al.
        Propionibacterium acnes induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D.
        J Invest Dermatol. 2014; 134: 366-373
        • Kistowska M.
        • Meier B.
        • Proust T.
        • et al.
        Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients.
        J Invest Dermatol. 2015; 135: 110-118
        • Kim J.
        • Ochoa M.T.
        • Krutzik S.R.
        • et al.
        Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses.
        J Immunol. 2002; 169: 1535-1541
        • Jugeau S.
        • Tenaud I.
        • Knol A.C.
        • et al.
        Induction of toll-like receptors by Propionibacterium acnes.
        Br J Dermatol. 2005; 153: 1105-1113
        • Qin M.
        • Pirouz A.
        • Kim M.H.
        • et al.
        Propionibacterium acnes induces IL-1 beta secretion via the NLRP3 inflammasome in human monocytes.
        J Invest Dermatol. 2014; 134: 381-388
        • Kistowska M.
        • Gehrke S.
        • Jankovic D.
        • et al.
        IL-1 beta drives inflammatory responses to propionibacterium acnes in vitro and in vivo.
        J Invest Dermatol. 2014; 134: 677-685
        • Lee S.E.
        • Kim J.M.
        • Jeong S.K.
        • et al.
        Protease-activated receptor-2 mediates the expression of inflammatory cytokines, antimicrobial peptides, and matrix metalloproteinases in keratinocytes in response to Propionibacterium acnes.
        Arch Dermatol Res. 2010; 302: 745-756
        • Norris J.F.
        • Cunliffe W.J.
        A histological and immunocytochemical study of early acne lesions.
        Br J Dermatol. 1988; 118: 651-659
        • Trivedi N.R.
        • Gilliland K.L.
        • Zhao W.
        • et al.
        Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling.
        J Invest Dermatol. 2006; 126: 1071-1079