Advertisement
Discussion| Volume 30, ISSUE 3, P329-334, May 2012

Abnormal epidermal barrier in the pathogenesis of atopic dermatitis

      Abstract

      Despite the acknowledged contributions of a defective epidermal permeability barrier, dryness of the skin, and the propensity to develop secondary infections to the etiology and pathophysiology of atopic dermatitis (AD), these epidermal changes have, until recently, been assumed to reflect downstream consequences that are secondary phenomena of the primary immunologic abnormality—the historical “inside-outside” view that AD is basically an intrinsic inflammatory disease.
      In this review, we focused on the role of the epidermal barrier function in the pathophysiology of AD. Specifically, we presented data in support of a barrier-initiated pathogenesis of AD, ie, the “outside-inside” concept. First, we reviewed the evidence on the existence of inherited barrier abnormalities in AD. Reported studies on the possible association of mutations in the filaggrin gene (FLG) and data on human tissue kallikreins (KLKs) and AD have been addressed. We then dealt with the question of the causal link between impaired epidermal barrier and inflammation. Finally, the association between innate immune defense system and the increased avidity of Staphylococcus aureus for atopic skin was examined.
      Despite very convincing evidence to support the barrier-initiated pathogenesis of AD, the view that AD reflects the downstream consequences of a primary immunologic abnormality cannot be dismissed out of hand. Almost every line of evidence in support of the role of the epidermal barrier as the “driver” of the disease activity can be challenged and at least partially contradicted by opposing evidence.
      Until more data are available and until all the dust settles around this issue, we should take advantage of what we already know and use our knowledge for practical purposes. Deployment of specific strategies to restore the barrier function in AD means the use of moisturizers as first-line therapy.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wolff K
        • Goldsmith L
        • Katz S
        • et al.
        Fitzpatrick's Dermatology in General Medicine. McGraw-Hill Companies, Inc., New York2008
        • Sandilands A.
        • Sutherland C.
        • Irvine A.D.
        • et al.
        Filaggrin in the frontline: role in skin barrier function and disease.
        J Cell Sci. 2009; 122: 1285-1294
        • Rawlings A.V.
        • Harding C.R.
        Moisturization and skin barrier function.
        Dermatol Ther. 2004; 17: 43-48
        • van den Oord R.A.
        • Sheikh A.
        Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis.
        BMJ. 2009; b2433: 339
        • Rodriguez E.
        • Baurecht H.
        • Herberich E.
        • et al.
        Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease.
        J Allergy Clin Immunol. 2009; 123: 1361-1370
        • Howell M.D.
        • Kim B.E.
        • Gao P.
        • et al.
        Cytokine modulation of atopic dermatitis filaggrin skin expression.
        J Allergy Clin Immunol. 2007; 120: 150-155
        • Irvine A.D.
        Fleshing out filaggrin phenotypes.
        J Invest Dermatol. 2007; 127: 504-507
        • O'Regan G.M.
        • Sandilands A.
        • McLean W.H.
        • et al.
        Filaggrin in atopic dermatitis.
        J Allergy Clin Immunol. 2008; 122: 689-693
        • Nemoto-Hasebe I.
        • Akiyama M.
        • Nomura T.
        • et al.
        Clinical severity correlates with impaired barrier in filaggrin-related eczema.
        J Invest Dermatol. 2009; 129: 682-689
        • Hubiche T.
        • Ged C.
        • Benard A.
        • et al.
        Analysis of SPINK 5, KLK 7 and FLG genotypes in a French atopic dermatitis cohort.
        Acta Derm Venereol. 2007; 87: 499-505
        • Eissa A.
        • Diamandis E.P.
        Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions.
        Biol Chem. 2008; 389: 669-680
        • Hachem J.P.
        • Houben E.
        • Crumrine D.
        • et al.
        Serine protease signaling of epidermal permeability barrier homeostasis.
        J Invest Dermatol. 2006; 126: 2074-2086
        • Man M.Q.
        • Barish G.D.
        • Schmuth M.
        • et al.
        Deficiency of PPARbeta/delta in the epidermis results in defective cutaneous permeability barrier homeostasis and increased inflammation.
        J Invest Dermatol. 2008; 128: 370-377
        • Sprecher E.
        • Chavanas S.
        • DiGiovanna J.J.
        • et al.
        The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton syndrome: implications for mutation detection and first case of prenatal diagnosis.
        J Invest Dermatol. 2001; 117: 179-187
        • Hachem J.P.
        • Wagberg F.
        • Schmuth M.
        • et al.
        Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome.
        J Invest Dermatol. 2006; 126: 1609-1621
        • Walley A.J.
        • Chavanas S.
        • Moffatt M.F.
        • et al.
        Gene polymorphism in Netherton and common atopic disease.
        Nat Genet. 2001; 29: 175-178
        • Nishio Y.
        • Noguchi E.
        • Shibasaki M.
        • et al.
        Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese.
        Genes Immun. 2003; 4: 515-517
        • Kato A.
        • Fukai K.
        • Oiso N.
        • et al.
        Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population.
        Br J Dermatol. 2003; 148: 665-669
        • Weidinger S.
        • Baurecht H.
        • Wagenpfeil S.
        • et al.
        Analysis of the individual and aggregate genetic contributions of previously identified serine peptidase inhibitor Kazal type 5 (SPINK5), kallikrein-related peptidase 7 (KLK7), and filaggrin (FLG) polymorphisms to eczema risk.
        J Allergy Clin Immunol. 2008; 122: 560-568
        • Kusunoki T.
        • Okafuji I.
        • Yoshioka T.
        • et al.
        SPINK5 polymorphism is associated with disease severity and food allergy in children with atopic dermatitis.
        J Allergy Clin Immunol. 2005; 115: 636-638
        • Folster-Holst R.
        • Stoll M.
        • Koch W.A.
        • et al.
        Lack of association of SPINK5 polymorphisms with nonsyndromic atopic dermatitis in the population of Northern Germany.
        Br J Dermatol. 2005; 152: 1365-1367
        • Voegeli R.
        • Rawlings A.V.
        • Breternitz M.
        • et al.
        Increased stratum corneum serine protease activity in acute eczematous atopic skin.
        Br J Dermatol. 2009; 161: 70-77
        • Bitoun E.
        • Micheloni A.
        • Lamant L.
        • et al.
        LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome.
        Hum Mol Genet. 2003; 12: 2417-2430
        • Ong C.
        • O'Toole E.A.
        • Ghali L.
        • et al.
        LEKTI demonstrable by immunohistochemistry of the skin: a potential diagnostic skin test for Netherton syndrome.
        Br J Dermatol. 2004; 151: 1253-1257
        • Roedl D.
        • Traidl-Hoffmann C.
        • Ring J.
        • et al.
        Serine protease inhibitor lymphoepithelial Kazal type-related inhibitor tends to be decreased in atopic dermatitis.
        J Eur Acad Dermatol Venereol. 2009; 23: 1263-1266
        • Elias P.M.
        The skin barrier as an innate immune element.
        Semin Immunopathol. 2007; 29: 3-14
        • Krien P.M.
        • Kermici M.
        Evidence for the existence of a self-regulated enzymatic process within the human stratum corneum—an unexpected role for urocanic acid.
        J Invest Dermatol. 2000; 115: 414-420
        • Stehlik C.
        Multiple interleukin-1beta-converting enzymes contribute to inflammatory arthritis.
        Arthritis Rheum. 2009; 60: 3524-3530
        • McGirt L.Y.
        • Beck L.A.
        Innate immune defects in atopic dermatitis.
        J Allergy Clin Immunol. 2006; 118: 202-208
        • Elias P.M.
        Stratum corneum defensive functions:an integrated view.
        J Invest Dermatol. 2005; 125: 183-200
        • Fluhr J.W.
        • Elias P.M.
        • Man M.Q.
        • et al.
        Is the filaggrin-histidine-urocanic acid pathway essential for stratum corneum acidification?.
        J Invest Dermatol. 2010; 130: 2141-2144
        • Jeong S.K.
        • Kim H.J.
        • Youm J.K.
        • et al.
        Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery.
        J Invest Dermatol. 2008; 128: 1930-1939
        • Palmer C.N.
        • Irvine A.D.
        • Terron-Kwiatkowski A.
        • et al.
        Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis.
        Nat Genet. 2006; 38: 441-446
        • Ong P.Y.
        • Leung D.Y.
        The infectious aspects of atopic dermatitis.
        Immunol Allergy Clin North Am. 2010; 30: 309-321
        • Bath-Hextall F.J.
        • Birnie A.J.
        • Ravenscroft J.C.
        • et al.
        Interventions to reduce Staphylococcus aureus in the management of atopic eczema: an updated Cochrane review.
        Br J Dermatol. 2010; 163: 12-26
        • Nizet V.
        • Ohtake T.
        • Lauth X.
        • et al.
        Innate antimicrobial peptide protects the skin from invasive bacterial infection.
        Nature. 2001; 414: 454-457
        • Yamasaki K.
        • Gallo R.L.
        Antimicrobial peptides in human skin disease.
        Eur J Dermatol. 2008; 18: 11-21
        • Metz-Boutigue M.H.
        • Shooshtarizadeh P.
        • Prevost G.
        • et al.
        Antimicrobial peptides present in mammalian skin and gut are multifunctional defence molecules.
        Curr Pharm Des. 2010; 16: 1024-1039
        • Ong P.Y.
        • Ohtake T.
        • Brandt C.
        • et al.
        Endogenous antimicrobial peptides and skin infections in atopic dermatitis.
        N Engl J Med. 2002; 347: 1151-1160
        • Goo J.
        • Ji J.H.
        • Jeon H.
        • et al.
        Expression of antimicrobial peptides such as LL-37 and hBD-2 in nonlesional skin of atopic individuals.
        Pediatr Dermatol. 2010; 27: 341-348
        • Harder J.
        • Dressel S.
        • Wittersheim M.
        • et al.
        Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury.
        J Invest Dermatol. 2010; 130: 1355-1364
        • Howell M.D.
        • Novak N.
        • Bieber T.
        • et al.
        Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis.
        J Invest Dermatol. 2005; 125: 738-745