Advertisement
Discussion| Volume 30, ISSUE 3, P301-310, May 2012

Noninvasive test methods for epidermal barrier function

      Abstract

      New bioengineering techniques provide noninvasive opportunities to evaluate clinically the application of various products on the skin. The skin barrier function and its integrity can be studied by transepidermal water loss, stratum corneum water content, transcutaneous flux of carbon dioxide and oxygen, and transepidermal movement of ions, particularly chloride, potassium, and hydrogen ions. The benefits of noninvasive techniques are due not only to their lack of skin barrier destruction but also to their potential for early detection of any subclinical effects not detected by the naked eyes.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Spruit D.
        • Malten K.E.
        Epidermal water-barrier formation after stripping of normal skin.
        J Invest Dermatol. 1965; 45: 6-14
        • Fluhr J.
        • Elsner P.
        • Berardesca E.
        • Maibach H.I.
        Bioengineering of the skin: water and the stratum corneum. CRC Press, London2005: 97-102
        • Verdier-Sevrain S.
        • Bonte F.
        Skin hydration: a review on its molecular mechanisms.
        J Cosmet Dermatol. 2007; 6: 75-82
        • Aalto-Korte K.
        Improvement of skin barrier function during treatment of atopic dermatitis.
        J Am Acad Dermatol. 1995; 33: 969-972
        • Grubauer G.
        • Feingold K.R.
        • Elias P.M.
        Relationship of epidermal lipogenesis to cutaneous barrier function.
        J Lipid Res. 1987; 28: 746-752
        • Jass H.E.
        • Elias P.M.
        The living stratum corneum: implication for cosmetic formulation.
        Cosmet Toiletries. 1991; 106: 47-53
        • Rougier A.
        • Lotte C.
        • Maibach H.I.
        In vivo relationship between percutaneous absorption and transepidermal water loss.
        in: Bronaugh R.L. Maibach H.I. Percutaneous Absorption. Marcel Dekker, New York1989: 89-175
        • Halkier-Sorensen L.
        • Thestrup-Pedersen K.
        The relationship between skin surface temperature, transepidermal water loss and electrical capacitance among workers in the fish processing industry: comparison with other occupations. A field study.
        Contact Dermatitis. 1991; 24: 345-355
        • Barel A.O.
        • Clarys P.
        Study of the stratum corneum barrier function by transepidermal water loss measurements: comparison between two commercial instruments: Evaporimeter and Tewameter.
        Skin Pharmacol. 1995; 8: 186-195
        • Kalia Y.N.
        • Pirot F.
        • Guy R.H.
        Homogeneous transport in a heterogeneous membrane: Water diffusion across human stratum corneum in vivo.
        Biophys J. 1996; 71: 2692-2700
        • Rodrigues L.M.
        • Pinto P.
        • Galego N.
        • Amores da Silva P.
        • Marcelo P.L.
        Transepidermal water loss kinetic modelling approach for the parametrization of skin water dynamics.
        Skin Res Technol. 1999; 5: 72-82
        • Batt M.D.
        • Fairhurst E.
        Hydration of the stratum corneum.
        Int J Cosmet Sci. 1986; 8: 253-264
        • Berardesca E.
        • Maibach H.I.
        Bioengineering technology for the noninvasive evaluation of the effects of clinical materials applied to skin.
        Clin Mater. 1987; 2: 251-257
        • Maibach H.I.
        • Bronaugh R.
        • Guy R.
        • et al.
        Noninvasive techniques for determining skin function.
        in: Drill V.A. Lazar P. Cutaneous toxicity. Raven Press, New York1984: 63-97
        • Rogiers V.
        Transepidermal water loss measurements in patch test assessment: the need for standardisation.
        Curr Probl Dermatol. 1995; 23: 152-158
        • Pinnagoda J.
        • Tupker R.A.
        • Agner T.
        • Serup J.
        Guidelines for transepidermal water loss (TEWL) measurement. A report from the Standardization Group of the European Society of Contact Dermatitis.
        Contact Dermatitis. 1990; 22: 164-178
        • Leveque J.L.
        Measurement of transepidermal water loss.
        in: Leveque J.L. Cutaneous investigation in health and disease: noninvasive methods and instrumentation. Marcel Dekker, New York1989: 135-153
        • Wananukul S.
        • Praisuwanna P.
        Transepidermal water loss during conventional phototherapy in nonhemolytic hyperbilirubinemia term infants.
        J Med Assoc Thai. 2001; 84: S46-50
        • Wananukul S.
        • Praisuwanna P.
        Clear topical ointment decreases transepidermal water loss in jaundiced preterm infants receiving phototherapy.
        J Med Assoc Thai. 2002; 85: 102-106
        • Maayan-Metzger A.
        • Yosipovitch G.
        • Hadad E.
        • Sirota L.
        Transepidermal water loss and skin hydration in preterm infants during phototherapy.
        Am J Perinatol. 2001; 18: 393-396
        • Rutter N.
        Clinical consequences of an immature barrier.
        Semin Neonatol. 2000; 5: 281-287
        • Lopez S.
        • Le Fur I.
        • Morizot F.
        • Heuvin G.
        • Guinot C.
        • Tschachler E.
        Transepidermal water loss, temperature and sebum levels on women's facial skin follow characteristic patterns.
        Skin Research Technol. 2000; 6: 31-36
        • Schnetz E.
        • Kuss O.
        • Schmitt J.
        • Diepgen T.L.
        • Kuhn M.
        • Fartasch M.
        Intra- and inter-individual variations in transepidermal water loss on the face: facial locations for bioengineering studies.
        Contact Dermatitis. 1999; 40: 243-247
        • Chilcott R.P.
        • Farrar R.
        Biophysical measurements of human forearm skin in vivo: effects of site, gender, chirality and time.
        Skin Res Technol. 2000; 6: 64-69
        • Rogiers B.
        • EEMCO Group
        EEMCO guidance for the assessment of trans-epidermal water loss in cosmetic sciences.
        Skin Pharmacol Appl Skin Physiol. 2001; 14: 28-117
        • Pilgram G.S.K.
        • Vissers D.C.J.
        • Van Der Meulen H.
        • et al.
        Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis.
        J Invest Dermatol. 2001; 117: 710-717
        • Lavrijsen A.P.M.
        • Hermans J.
        • Ponec M.
        Barrier function parameters in various keratinisation disorders: transepidermal water loss and vascular response to hexyl nicotinate.
        Br J Dermatol. 1993; 129: 547-554
        • Hachem J.P.
        • De Paepe K.
        • Vanpée E.
        • Kaufman L.
        • Rogiers V.
        • Roseeuw D.
        Combination therapy improves the recovery of the skin barrier function: an experimental model using a contact allergy patch test combined with TEWL measurements.
        Dermatology. 2001; 202: 314-319
        • Zhai H.
        • Brachman F.
        • Pelosi A.
        • et al.
        A bioengineering study on the efficacy of a skin protectant lotion in preventing SLS-induced dermatitis.
        Skin Res Technol. 2000; 6: 77-80
        • De Paépe K.
        • Hachem J.P.
        • Vanpee E.
        • et al.
        Beneficial effects of a skin tolerance-tested moisturizing cream on the barrier function in experimentally-elicited irritant and allergic contact dermatitis.
        Contact Dermatitis. 2001; 44: 337-343
        • Di Nardo A.
        • Sugino K.
        • Wertz P.
        • et al.
        Sodium lauryl sulfate (SLS) induced irritant contact dermatitis: a correlation study between ceramides and in vivo parameters of irritation.
        Contact Dermatitis. 1996; 35: 86-91
        • Aramaki J.
        • Effendy I.
        • Happle R.
        • Kawana S.
        • Löffler C.
        • Löffler H.
        Which bioengineering assay is appropriate for irritant patch testing with sodium lauryl sulfate?.
        Contact Dermatitis. 2001; 45: 286-290
        • Visscher M.
        • Hoath S.B.
        • Conroy E.
        • Wickett R.R.
        Effect of semipermeable membranes on skin barrier repair following tape stripping.
        Arch Dermatol Res. 2001; 293: 491-499
        • Denda M.
        • Tsuchiya T.
        Barrier recovery rate varies time-dependently in human skin.
        Br J Dermatol. 2000; 142: 881-884
        • Schmuth M.
        • Wimmer M.A.
        • Hofer S.
        • et al.
        Topical corticosteroid therapy for acute radiation dermatitis: A prospective, randomized, double-blind study.
        Br J Dermatol. 2002; 146: 983-991
        • Yosipovitch G.
        • Xiong G.L.
        • Haus E.
        • et al.
        Time-dependent variations of the skin barrier function in humans: Transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature.
        J Invest Dermatol. 1998; 110: 20-23
        • Le Fur I.
        • Reinberg A.
        • Lopez S.
        • Morizot F.
        • Mechkouri M.
        • Tschachler E.
        Analysis of circadian and ultradian rhythms of skin surface properties of face and forearm of healthy women.
        J Invest Dermatol. 2001; 117: 718-724
        • Altemus M.
        • Rao B.
        • Dhabhar F.S.
        • Ding W.
        • Granstein R.D.
        Stress-induced changes in skin barrier function in healthy women.
        J Invest Dermatol. 2001; 117: 309-317
        • Muizzuddin N.
        • Matsui M.S.
        • Marenus K.D.
        • Maes D.H.
        Impact of stress of marital dissolution on skin barrier recovery: tape stripping and measurement of trans-epidermal water loss (TEWL).
        Skin Res Technol. 2003; 9: 34-38
        • Lévêque J.L.
        • Hallégot P.
        • Doucet J.
        • Piérard G.
        Structure and function of human stratum corneum under deformation.
        Dermatology. 2002; 205: 353-357
        • Loffler H.
        • Aramaki J.U.
        • Effendy I.
        The influence of body mass index on skin susceptibility to sodium laurel sulphate.
        Skin Res Technol. 2002; 8: 19-22
        • Masson P.
        The contribution of the European Cosmetics Directive towards international harmonisation: impact on the evaluation of safety and efficacy.
        in: Elsner P. Merk H.F. Maibach H.I. Cosmetics: controlled efficacy studies and regulation. Springer, Berlin1999: 20-35
      1. Colipa: Guidelines for the evaluation of the efficacy of cosmetic products. Scientific information brochure. Brussels: Colipa; 1997.

        • Schrader K.
        On the problem of in vivo cleansing of the human skin.
        in: Elsner P. Merk H.F. Maibach H.I. Cosmetics: controlled efficacy studies and regulation. Springer, Berlin1999: 92-106
        • Lambers H.
        • Pronk H.
        Biophysical methods for stratum corneum characterisation.
        in: Forster T. Cosmetic lipids and the skin barrier. Marcel Dekker, Basel2002: 185-225
        • Harvell J.
        • Maibach H.I.
        Bioengineering methods to evaluate in vivo skin irritation: application to in vitro validation.
        in: Rougier A. Goldberg A.M. Maibach H.I. Alternative Methods in toxicology, irritiation, phototoxicity, sensitisation. Liebert, New York1994: 9-11
        • Schnetz E.
        • Diepgen T.L.
        • Elsner P.
        • et al.
        Multicentre study for the development of an in vivo model to evaluate the influence of topical formulations on irritation.
        Contact Dermatitis. 2000; 42: 336-343
        • Lodén M.
        • Andersson A.
        • Andersson C.
        • et al.
        Instrumental and dermatologist evaluation of the effect of glycerine and urea on dry skin in atopic dermatitis.
        Skin Res Technol. 2001; 7: 209-213
        • De Paepe K.
        • Hachem J.
        • Vanpee E.
        • et al.
        Effect of rice starch as a bath additive on the barrier function of healthy but SLS-damaged skin and skin of atopic patients.
        Acta Derm Venereol. 2002; 82: 184-186
        • De Paepe K.
        • Roseeuw D.
        • Rogiers V.
        Body lotion enriched with skin identical lipids: a TEWL study of aged skin and SLS-induced scaly skin.
        Eur Cosmetics. 1999; : 38
        • Gabard B.
        • Bieli E.
        Measurement of lipid deposition on the skin of the forearm: comparison of different bath oils.
        J Soc Cosmetic Chem. 1991; 42: 299-308
        • Mao-Qiang M.
        • Feingold K.R.
        • Wang F.
        • et al.
        A natural lipid mixture improves barrier function and hydration in human and murine skin.
        J Cosmet Sci. 1996; 47: 157-166
      2. De Paepe K, etc. Ceramides/cholesterol/FFA-containing body lotions: effect on the TEWL of aged and SLS-damaged skin. In: Ziolkowsky GH, editor. Conference Proceedings. Active Ingredients Conference, Paris; 1996. p. 97-111.

        • Schlüter-Wigger W.
        • Elsner P.
        Efficacy of 4 commercially available protective creams in the repetitive irritation test (RIT).
        Contact Dermatitis. 1996; 34: 278-283
        • Korstanje C.
        Barrier creams.
        in: Barel A. Paye M. Maibach H.I. Handbook of cosmetic science and technology. Marcel Dekker, Basel2001: 557-566
        • De Paepe K.
        • Roseeuw D.
        • Derde M.P.
        • Rogiers V.
        Vergelijkende studie van dermato-cosmetische producten voor de droge tot zeer droge huid: objective evaluatie aan de hand van efficientiemetingen.
        Tijdschr Geneeskunde. 1999; 55: 268-277
        • Haratake A.
        • Uchida Y.
        • Schmuth M.
        • et al.
        UVB-induced alterations in permeability barrier function: Roles for epidermal hyperproliferation and thymocyte-mediated response.
        J Invest Dermatol. 1997; 108: 769-775
        • Philippe M.
        • Garson J.C.
        • Gilard P.
        • et al.
        Synthesis of 2-N-oleylamino-octadecane-1,3-diol: a new ceramide highly effective for the treatment of skin and hair.
        Int J Cosmet Sci. 1995; 17: 133-146
        • Lintner K.
        • Mondon P.
        • Girard F.
        • Gibaud C.
        The effect of a synthetic ceramide-2 on transepidermal water loss after stripping or sodium lauryl sulfate treatment: an in vivo study.
        Int J Cosmet Sci. 1997; 19: 15-25
        • Imokawa G.
        • Akasaki S.
        • Kawamata A.
        • Yano S.
        • Takaishi N.
        Water-retaining function in the stratum corneum and its recovery properties by synthetic pseudoceramides.
        J Soc Cosmet Chem. 1989; 40: 273-285
        • Berardesca E.
        • Vignoli G.
        • Borroni G.
        • et al.
        The environmental threat to the skin.
        in: Marks D. Plewig G. Surfactant damaged skin: which treatment? Martin Dunitz, London1991: 283-285
        • Farin F.
        • Lambers H.
        • Keuning W.
        • Van Der Wilden W.
        Human skin-identical ceramides.
        Cosmet Toiletries. 1995; 3: 126-132
        • De Paepe K.
        • Roseeuw D.
        • Rogiers V.
        Les ceramides dans les preparations dermo-cosmetiques.
        J Med Esth Chir Derm. 1999; 26: 179-184
        • Zettersten E.
        • Ghadially R.
        • Feingold K.
        • et al.
        Optimal ratios of topical SC lipids improve barrier recovery in chronobiologically aged skin.
        J Am Acad Dermatol. 1997; 37: 403-408
        • Chamlin S.L.
        • Kao J.
        • Frieden I.J.
        • et al.
        Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: Changes in barrier function provide a sensitive indicator of disease activity.
        J Am Acad Dermatol. 2002; 47: 198-208
        • Rogiers V.
        • Balls M.
        • Basketter D.
        • et al.
        The potential use of non-invasive methods in safety assessment of cosmetic products.
        ATLA. 1999; 27: 515-537
        • Blank I.H.
        • Moloney III, J.
        • Emslie A.G.
        • Simon I.
        • Apt C.
        The diffusion of water across the stratum corneum as a function of its water content.
        J Invest Dermatol. 1984; 82: 188-194
        • Clar E.J.
        • Her C.P.
        • Sturelle C.G.
        Skin impedance and moisturization.
        J Soc Cosmetic Chemists Japan. 1975; 26: 337-353
        • Salter D.C.
        Quantifying skin disease and healing in vivo using electrical impedance measurements.
        in: Rolfe P. Noninvasive physiological measurements. Academic Press, London1979: 21-64
        • Borroni G.
        • Berardesca E.
        • Bellosta M.
        • et al.
        Evidence for regional variation in water content of the stratum corneum in senile skin an electrophysiological assessment.
        It Gen Rev Dermatol. 1982; 19: 91-95
        • Potts R.O.
        Stratum corneum hydration: experimental techniques and interpretations of results.
        J Soc Cosmet Chem Japan. 1986; 37: 9-33
        • Loden M.
        • Hagforsen E.
        • Lindberg M.
        The presence of body hair influences the measurement of skin hydration with the corneometer.
        Acta Derm Venereol. 1995; 75: 449-450
        • Wepierre J.
        Study of the hydrating effect of cosmetic preparations by measuring cutaneous impedance in the hairless rat.
        Soap Perfum Cosmet. 1977; 50: 506-509
        • Simon I.
        • Emslie A.
        • Apt C.M.
        • et al.
        Determination in vivo of water concentration profile in human stratum corneum by a photoacoustic method.
        in: Marks R. Payne P.A. Bioengineering and the skin. MTP Press, Lancaster1981: 95-187
        • Girard P.
        • Beraud A.
        • Sirvent A.
        Study of three complementary techniques for measuring cutaneous hydration in vivo in human subjects: NMR spectroscopy, transient thermal transfer and corneometry—application to xerotic skin and cosmetics.
        Skin Res Technol. 2000; 6: 205-213
        • Martinsen O.G.
        • Grimnes S.
        • Karlsen J.
        Electrical methods for skin moisture assessment.
        Skin Pharmacol. 1995; 8: 237-245
        • Ozawa T.
        • Takahashi M.
        Skin hydration: recent advances.
        Acta Derm Venereol Suppl (Stockh). 1994; 185: 26-28
        • Barel A.O.
        • Clarys P.
        • Gabard B.
        In vivo evaluation of the hydration state of the skin: measurements and methods for claim support.
        in: Elsner P. Merk H.F. Maibach H.I. Cosmetics-controlled efficacy studies and regulation. Springer-Verlag, Berlin1999: 57-80
        • Leveque J.L.
        • De Rigal J.
        Impedance methods for studying moisturization.
        J Soc Chem. 1983; 34: 419-428
        • Rogiers V.
        • Derde M.P.
        • Verleye G.
        • Roseeuw D.
        Standardized conditions needed for skin surface hydration measurements.
        Cosmet Toiletries. 1990; 105: 73-82
        • Van Neste D.
        Comparative study of normal and rough human skin hydration in vivo: Evaluation with four different instruments.
        J Dermatol Sci. 1991; 2: 119-124
        • Hashimoto-Kumasaka K.
        • Takahashi K.
        • Tagami H.
        Electrical measurement of the water content of the stratum corneum in vivo and in vitro under various conditions: comparison between skin surface hygrometer and corneometer in evaluation of the skin surface hydration state.
        Acta Derm Venereol. 1993; 73: 335-339
        • Mehier H.
        • Maurice M.
        • Bonche J.P.
        • et al.
        Magnetic resonance spectroscopy in vivo with a 1.2 resistive magnet.
        Comptes Rendus de l'Academie des Sciences—Serie III. 1988; 306: 313-316
        • Foreman M.I.
        A proton magnetic resonance study of water in human stratum corneum.
        Biochim Biophys Acta. 1976; 437: 599-603
        • Querleux B.
        • Richard S.
        • Bittoun J.
        • et al.
        In vivo hydration profile in skin layers by high-resolution magnetic resonance imaging.
        Skin Pharmacol. 1994; 7: 210-216
        • Marichy J.
        • Dittmar A.
        • Ceyrat J.
        Thermal effusivity of grafted skin.
        Ann Chir Plast. 1979; 24: 279-282
        • Berardesca E.
        • Fideli D.
        • Borroni G.
        • et al.
        In vivo hydration and water-retention capacity of stratum corneum in clinically uninvolved skin in atopic and psoriatic patients.
        Acta Derm Venereol. 1990; 70: 400-404
        • Rothman S.
        Physiology and Biochemistry of the skin. University of Chicago Press, Chicago1954: 580-581
        • Fitzgerald L.R.
        Cutaneous respiration in man.
        Physiol Rev. 1957; 37: 325-336
        • Ernstene A.C.
        • Volk M.C.
        Cutaneous respiration in man: VII. the effect of venous congestion on the rate of carbon dioxide elimination and oxygen absorption.
        J Clin Invest. 1932; 11: 387-390
        • Frame G.W.
        • Strauss W.G.
        • Maibach H.I.
        Carbon dioxide emission of the human arm and hand.
        J Invest Dermatol. 1972; 59: 155-159
        • Wilson D.
        • Severinghaus J.
        • Maibach H.
        Newborn infant and adult transcutaneous PO2 resistance: a comparison.
        Arch Dermatol Res. 1981; 271: 119-125
        • Versmold H.T.
        • Tooley W.H.
        • Severinghaus J.W.
        Increase of skin O2 diffusion resistance with birthweight.
        Birth Defects Orig Artic Ser. 1979; 15: 271-272
        • Cunico R.L.
        • Maibach H.L.
        • Khan H.
        • Bloom E.
        Skin barrier properties in the newborn. Transepidermal water loss and carbon dioxide emission rates.
        Biol Neonate. 1977; 32: 177-182
        • Wilson D.R.
        • Maibach H.I.
        Transepidermal water loss in vivo. Premature and term infants.
        Biol Neonate. 1980; 37: 180-185
        • Wahlberg J.E.
        Transepidermal or transfollicular absorption? In vivo and in vitro studies in hairy and non-hairy guinea pig skin with sodium (22Na) and mercuric (203Hg) chlorides.
        Acta Derm Venereol. 1968; 48: 336-344
        • Anjo D.M.
        • Maibach H.
        Transepidermal chloride flux through hydrated skin: combination chloride electrode.
        Br J Dermatol. 1981; 105: 39-44
        • Grice K.
        • Sattar H.
        • Casey T.
        • Baker H.
        An evaluation of Na+, C1- and pH ion-specific electrodes in the study of the electrolyte contents of epidermal transudate and sweat.
        Br J Dermatol. 1975; 92: 511-518
      3. Leake C.D. Biological action of DMSO. Ann N Y Acad Sci. 141. 1967: 670-671
        • Lo J.S.
        • Oriba H.A.
        • Maibach H.I.
        • Bailin P.L.
        Transepidermal potassium ion, chloride ion, and water flux across delipidized and cellophane tape-stripped skin.
        Dermatologica. 1990; 180: 66-68
        • Karan A.
        • Alikhan A.
        • Maibach H.I.
        Toxicologic implications of cutaneous barriers: A molecular, cellular, and anatomical overview.
        J Appl Toxicol. 2009; 29: 551-559
        • Samitz M.H.
        • Katz S.
        • Shrager J.D.
        Studies of the diffusion of chromium compounds through skin.
        J Invest Dermatol. 1967; 48: 514-520
        • Bommannan D.
        • Potts R.O.
        • Guy R.H.
        Examination of stratum corneum barrier function in vivo by infrared spectroscopy.
        J Invest Dermatol. 1990; 95: 403-408
        • Bissonnette R.
        • Diepgen T.L.
        • Elsner P.
        • et al.
        Redefining treatment options in chronic hand eczema (CHE).
        J Eur Acad Dermatol Venereol. 2010; 24: 1-20
        • Tsai J.
        • Cappel M.J.
        • Weiner N.D.
        • Flynn G.L.
        • Ferry J.
        Solvent effects on the harvesting of stratum corneum from hairless mouse skin through adhesive tape stripping in vitro.
        Int J Pharm. 1991; 68: 127-133
        • Marttin E.
        • Neelissen-Subnel M.T.A.
        • DeHaan F.H.N.
        • Boddé H.E.
        A critical comparison of methods to quantify stratum corneum removed by tape stripping..
        Skin Pharmacol. 1996; 9: 69-77
        • Shah V.P.
        • Flynn G.L.
        • Yacobi A.
        • et al.
        Bioequivalence of topical dermatological dosage forms—methods of evaluation of bioequivalence.
        Pharm Res. 1998; 15: 167-171
        • Morhenn V.B.
        • Chang E.Y.
        • Rheins L.A.
        A noninvasive method for quantifying and distinguishing inflammatory skin reactions.
        J Am Acad Dermatol. 1999; 41: 687-692
        • Hoefakker S.
        • Caubo M.
        • Van't Erve E.H.M.
        • et al.
        In vivo cytokine profiles in allergic and irritant contact dermatitis.
        Contact Dermatitis. 1995; 33: 258-266
        • Krasteva M.
        Contact dermatitis.
        Int J Dermatol. 1993; 32: 547-560
        • Kupper T.S.
        Production of cytokines by epithelial tissues. A new model for cutaneous inflammation.
        Am J Dermatopathol. 1989; 11: 69-73
        • Grängsjö A.
        • Leijon-Kuligowski A.
        • Törmä H.
        • et al.
        Different pathways in irritant contact eczema? Early differences in the epidermal elemental content and expression of cytokines after application of 2 different irritants.
        Contact Dermatitis. 1996; 35: 355-360
        • Mohamadzadeh M.
        • Muller M.
        • Hultsch T.
        • et al.
        Enhanced expression of IL-8 in normal human keratinocytes and human keratinocyte cell line HaCaT in vitro after stimulation with contact sensitizers, tolerogens and irritants.
        Exp Dermatol. 1994; 3: 298-303
        • Ohmen J.D.
        • Hanifin J.M.
        • Nickoloff B.J.
        • et al.
        Overexpression of IL-10 in atopic dermatitis: Contrasting cytokine patterns with delayed-type hypersensitivity reactions.
        J Immunol. 1995; 154: 1956-1963
        • Riemann H.
        • Schwarz A.
        • Grabbe S.
        • et al.
        Neutralization of IL-12 in vivo prevents induction of contact hypersensitivity and induces hapten-specific tolerance.
        J Immunol. 1996; 156: 1799-1803
        • Howie S.E.M.
        • Aldridge R.D.
        • McVittie E.
        • et al.
        Epidermal keratinocyte production of interferon-γ immunoreactive protein and mRNA is an early event in allergic contact dermatitis.
        J Invest Dermatol. 1996; 106: 1218-1223
        • Cher D.J.
        • Mosmann T.R.
        Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by T(H)1 clones.
        J Immunol. 1987; 138: 3688-3694
        • Thomson J.A.
        • Troutt A.B.
        • Kelso A.
        Contact sensitization to oxazolone: involvement of both interferon-γ and interleukin-4 in oxazolone-specific Ig and T-cell responses.
        Immunology. 1993; 78: 185-192
        • Gorzelanny C.
        • Goerge T.
        • Schnaeker E.
        • et al.
        Atomic force microscopy as an innovative tool for nanoanalysis of native stratum corneum.
        Exp Dermatol. 2006; 15: 387-391
        • Stokes D.J.
        Recent advantages in electron imaging, image interpretation and applications: environmental scanning electron microscopy.
        Philos Trans R Soc Lond A. 2003; 361: 2771-2787
        • Henderson R.M.
        • Oberleithner H.
        Pushing, pulling, dragging, and vibrating renal epithelia by using atomic force microscopy.
        Am J Physiol Renal Physiol. 2000; 27: F689-701
        • Hoath S.B.
        • Leahy D.G.
        The organization of human epidermis: functional epidermal units and phi proportionality.
        J Invest Dermatol. 2003; 121: 1440-1446
        • Kashibuchi N.
        • Hirai Y.
        • O'Goshi K.
        • Tagami H.
        Three-dimensional analyses of individual corneocytes with atomic force microscope: Morphological changes related to age, location and to the pathologic skin conditions.
        Skin Res Technol. 2002; 8: 203-211
        • Watanabe M.
        • Tagami H.
        • Horii I.
        • et al.
        Functional analyses of the superficial stratum corneum in atopic xerosis.
        Arch Dermatol. 1991; 127: 1689-1692
        • Grove G.L.
        Age-associated change in human epidermal cell renewal and repaid.
        in: Balin A.K. Kligman A.M. Aging and the skin. Raven Press, New York1989: 193-201
        • Wilhelm K.
        • Saunders J.C.
        • Maibach H.I.
        Increased stratum corneum turnover induced by subclinical irritant dermatitis.
        BrJ Dermatol. 1990; 122: 793-798
        • Schaefer H.
        • Redelmeier T.E.
        Skin Barrier. Principles of percutaneous absorption. Karger, Basel1996: 61-76
        • Bhushan B.
        Nanoscale characterization of human hair and hair conditioners.
        Prog Materials Sci. 2008; 53: 585-710
        • Bhushan B.
        Nanotribology and nanomechanics. 2nd ed. Springer, Heidelberg2008: 244-272
        • Tang W.
        • Bhushan B.
        Adhesion, friction and wear characterization of skin and skin cream using atomic force microscope.
        Colloids and Surfaces B: Biointerfaces. 2010; 76: 1-15
        • Bhushan B.
        Handbook of micro/nanotribology. CRC Press, Boca Raton (Fla)1999: 2-52
        • Bhushan B.
        Introduction to tribology. NY, Wiley2002: 575-624
        • Bhushan B.
        Principles and applications of tribology. NY, Wiley1999: 753-796
        • Bhushan B.
        Springer handbook of nanotechnology. Springer, Heidelberg2007: 595-612
        • Fung C.K.
        • Seiffert-Sinha K.
        • Lai K.W.
        • et al.
        Investigation of human keratinocyte cell adhesion using atomic force microscopy.
        Nanomedicine. 2010; 6: e191-200
        • Rieti S.
        • Manni V.
        • Lisi A.
        • et al.
        Morphological and biochemical analysis by atomic force microscopy and scanning near-field optical microscopy techniques of human keratinocytes (HaCaT) exposed to extremely low frequency 50 Hz magnetic field.
        Appl Phys Lett. 2002; 81: 2890
        • Rieti S.
        • Manni V.
        • Lisi A.
        • et al.
        SNOM and AFM microscopy techniques to study the effect of non-ionizing radiation on the morphological and biochemical properties of human keratinocytes cell line (HaCaT).
        J Microsc. 2004; 213: 20-28
        • Reich A.
        • Lehmann B.
        • Meurer M.
        • Muller D.J.
        Structural alterations provoked by narrow-band ultraviolet B in immortalized keratinocytes: assessment by atomic force microscopy.
        Exp Dermatol. 2007; 16: 1007-1015
        • Hee M.R.
        • Izatt J.A.
        • Swanson E.A.
        • et al.
        Optical coherence tomography of the human retina.
        ArchOphthalmol. 1995; 113: 325-332
        • Hee M.R.
        • Puliafito C.A.
        • Wong C.
        • et al.
        Optical coherence tomography of macular holes.
        Ophthalmol. 1995; 102: 748-756
        • Hee M.R.
        • Puliafito C.A.
        • Wong C.
        • et al.
        Optical coherence tomography of central serous chorioretinopathy.
        Am J Ophthalmol. 1995; 120: 65-74
        • Schuman J.S.
        • Hee M.R.
        • Puliafito C.A.
        • et al.
        Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study.
        Arch Ophthalmol. 1995; 113: 586-596
        • Gladkova N.D.
        • Petrova G.A.
        • Nikulin N.K.
        • et al.
        In vivo optical coherence tomography imaging of human skin: norm and pathology.
        Skin Res Technol. 2000; 6: 6-16
        • Pagnoni A.
        • Knuettel A.
        • Welker P.
        • et al.
        Optical coherence tomography in dermatology.
        Skin Res Technol. 1999; 5: 83-87
        • Welzel J.
        • Lankenau E.
        • Birngruber R.
        • Engelhardt R.
        Optical coherence tomography of the human skin.
        J Am Acad Dermatol. 1997; 37: 958-963
        • Welzel J.
        • Lankenau E.
        • Birngruber R.
        • Engelhardt R.
        Optical coherence tomography of the skin.
        Curr Probl.Dermatol. 1998; 26: 27-37
        • Welzel J.
        • Lankenau E.
        • Engelhardt R.
        Optische Koha renztomographie als ein neues Verfahren zur nicht-invasiven Darstellung oberflachennaher Strukturen der Haut.
        in: Garbe C. Rassner G. Dermatologie Leitlinien und Qualitatssicherung fur Diagnostik und Therapie. Springer, New York1998: 9-12
        • Welzel J.
        Optical coherence tomography—A new non-invasive method for the morphological evaluation of the skin.
        Akt Dermatol. 2000; 26: 174-177
        • Fercher A.F.
        • Mengedoht K.
        • Werner W.
        Eye-length measurement by interferometry with partially coherent light.
        Opt Lett. 1988; 13: 186-188
        • Huang D.
        • Swanson E.A.
        • Lin C.P.
        • et al.
        Optical coherence tomography.
        Science. 1991; 254: 1178-1181
        • Welzel J.
        Optical coherence tomography in dermatology: a review.
        Skin Res Technol. 2001; 7: 1-9
        • Pierce M.C.
        • Strasswimmer J.
        • Park B.H.
        • Cense B.
        • De Boer J.F.
        Advances in optical coherence tomography imaging for dermatology.
        J Invest Dermatol. 2004; 123: 458-463
        • Schmitt J.M.
        • Yadlowsky M.J.
        • Bonner R.F.
        Subsurface imaging of living skin with optical coherence microscopy.
        Dermatology. 1995; 191: 93-98
        • Pan Y.
        • Farkas D.L.
        Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions.
        J Biomed Opt. 1998; 3: 446-455
        • Welzel J.
        • Bruhns M.
        • Wolff H.H.
        Optical coherence tomography in contact dermatitis and psoriasis.
        Arch Dermatol Res. 2003; 295: 50-55
        • Welzel J.
        • Reinhardt C.
        • Lankenau E.
        • et al.
        Changes in function and morphology of normal human skin: evaluation using optical coherence tomography.
        Br J Dermatol. 2004; 150: 220-225