Advertisement
Discussion| Volume 30, ISSUE 3, P257-262, May 2012

Structure and function of the epidermis related to barrier properties

      Abstract

      The most important function of the skin is the formation of a barrier between the “inside” and the “outside” of the organism, which prevents invasion of pathogens and fends off chemical assaults as well as the unregulated loss of water and solutes. The physical barrier is mainly localized in the stratum corneum, which consists of protein-enriched cells and lipid-enriched intercellular domains. Any modifications in epidermal differentiation and lipid composition results in altered barrier function, a central event in various skin alterations and diseases. This contribution presents a brief description of the structure of the skin, paying attention to the most important components responsible for skin barrier function.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Breitkreutz D.
        • Mirancea N.
        • Nischt R.
        Basement membranes in skin: unique matrix structures with diverse functions?.
        Histochem Cell Biol. 2009; 132: 1-10
        • Randall Wickett R.
        • Visscher M.O.
        Structure and function of the epidermal barrier.
        Am J Infect Control. 2006; 34: 98-110
        • Proksch E.
        • Brandner J.M.
        • Jensen J.M.
        The skin: an indispensable barrier.
        Exp Dermatol. 2008; 17: 1063-1072
        • Blanpain C.
        • Fuchs E.
        Epidermal stem cells of the skin.
        Annu Rev Cell Dev Biol. 2006; 22: 339-373
        • Webb A.
        • Li A.
        • Kaur P.
        Location and phenotype of human adult keratinocyte stem cells of the skin.
        Differentiation. 2004; 72: 387-395
        • Pullmann H.
        • Lennartz K.J.
        • Steigleder G.K.
        Disturbance of DNA-synthesis in early psoriasis.
        Arch Dermatol Res. 1977; 258: 211-218
        • Roop D.
        Defects in the barrier.
        Science. 1995; 267: 474-475
        • Nemes Z.
        • Steinert P.M.
        Bricks and mortar of the epidermal barrier.
        Exp Mol Med. 1999; 31: 5-19
        • Hitomi K.
        Transglutaminases in skin epidermis.
        Eur J Dermatol. 2005; 15: 313-319
        • Denda M.
        New methodology to improve epidermal barrier homeostasis.
        in: Loden M. Maibach H.I. Dry skin and moisturizers. Taylor and Francis, New York2006: 155-167
        • Menon G.K.
        • Grayson S.
        • Elias P.M.
        Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry.
        J Invest Dermatol. 1985; 84: 508-512
        • Lee S.H.
        • Elias P.M.
        • Proksch E.
        • Menon G.K.
        • Mao-Quiang M.
        • Feingold K.R.
        Calcium and potassium are important regulators of barrier homeostasis in murine epidermis.
        J Clin Invest. 1992; 89: 530-538
        • Cumberbatch M.
        • Dearman R.J.
        • Griffiths C.E.
        • Kimber I.
        Epidermal Langerhans cell migration and sensitisation to chemical allergens.
        APMIS. 2003; 111: 797-804
        • Heck D.E.
        • Gerecke D.R.
        • Vetrano A.M.
        • Laskin J.D.
        Solar ultraviolet radiation as a trigger of cell signal transduction.
        Toxicol Appl Pharmacol. 2004; 195: 288-297
        • Pieri L.
        • Domenici L.
        • Romagnoli P.
        Langerhans cells differentiation: a three-act play.
        It J Anat Embryol. 2001; 106: 47-69
        • Madison K.C.
        Barrier function of the skin: “la raison d’etre” of the epidermis.
        J Invest Dermatol. 2003; 121: 231-241
        • Wertz P.W.
        Lipids and barrier function of the skin.
        Acta Derm Venereol. 2000; 208: 7-11
        • Wertz P.W.
        • van den Bergh B.
        The physical, chemical and functional properties of lipids in the skin and other biological barriers.
        Chem Phys Lipids. 1988; 91: 85-96
        • Bouwstra J.A.
        • Pilgrim K.
        • Ponec M.
        Structure of the skin barrier.
        in: Elias P.M. Feingold K.R. Skin barrier. Taylor and Francis, New York2006: 65-95
        • Landmann L.
        The epidermal permeability barrier.
        Anat Embryol. 1988; 178: 1-13
        • Proksch E.
        • Jensen J.M.
        Skin as an organ of protection.
        in: Wolff K. Katz S.I. Goldsmith L.A. Gilchrest B.A. Paller A.S. Leffell D.J. 7th ed. Fitzpatrick's dermatology in general medicine. McGraw Hill Medical, New York2008: 383-395
        • Wertz P.W.
        Biochemistry of human stratum corneum lipids.
        in: Elias P.M. Feingold K.R. Skin barrier. Taylor and Francis, New York2006: 33-42
        • Wilhelm K.P.
        • Maibach H.I.
        Factors predisposing to cutaneous irritation.
        Dermatol Clin. 1990; 8: 17-22
        • Elias P.M.
        • Fritsch P.
        • Epstein E.H.
        Staphylococcal scalded skin syndrome. Clinical features, pathogenesis, and recent microbiological and biochemical developments.
        Arch Dermatol. 1977; 113: 207-219
        • Honari S.
        Topical therapies and antimicrobials in the management of burn wounds.
        Crit Care Nurs Clin North Am. 2004; 16: 1-11
        • Furuse M.
        • Hata M.
        • Furuse K.
        • et al.
        Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice.
        J Cell Biol. 2002; 156: 1099-1111
        • Turksen K.
        • Troy T.C.
        Permeability barrier dysfunction in transgenic mice overexpressing claudin 6.
        Development. 2002; 129: 1775-1784
        • Brandner J.M.
        • Proksch E.
        Epidermal barrier function: role of tight junctions.
        in: Elias P.M. Feingold K.R. Skin barrier. Taylor and Francis, New York2006: 191-210
        • Young B.
        • Heath J.W.
        • Stevens A.
        • Lowe J.S.
        • Wheater P.R.
        • Burkitt H.G.
        Wheater's functional histology: a text and colour atlas.
        Edinburgh, Churchill Livingstone2000
        • Fawcett D.W.
        • Jensh R.P.J.
        • Bloom W.
        Bloom & Fawcett's concise histology.
        Arnold, London2002
        • Jensen J.M.
        • Proksch E.
        The skin's barrier.
        G Ital Dermatol Venereol. 2009; 144: 689-700
        • Gallo R.L.
        • Nizet V.
        Endogenous production of antimicrobial peptides in innate immunity and human disease.
        Curr Allergy Asthma Rep. 2003; 3: 402-409
        • Nizet V.
        • Gallo R.L.
        Cathelicidins and innate defense against invasive bacterial infection.
        Scad J Infect Dis. 2003; 35: 670-676
        • Niyonsaba F.
        • Nagaoka I.
        • Ogawa H.
        • Okumura K.
        Multifunctional antimicrobial proteins and peptides: natural activitators of immune systems.
        Curr Pharm Des. 2009; 15: 2393-2413
        • Tagami H.
        The role of complement mediators in inflammatory skin diseases.
        Arch Dermatol Res. 1992; 284: 2-9
        • Jouault T.
        • Sarazin A.
        • Martinez-Esparza M.
        • Fradin C.
        • Sendid B.
        • Poulain D.
        Host responses to a versatile commensal: PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans.
        Cell Microbiol. 2009; 11: 1007-1015
        • Takeda K.
        • Akira S.
        Toll-like receptors in innate immunity.
        Int Immunol. 2005; 17: 1-14
        • Zasloff M.
        Antimicrobial peptides of multicellular organisms.
        Nature. 2002; 415: 389-395
        • Oppenheim J.J.
        • Yang D.
        Alarmins: chemotactic activators of immune responses.
        Curr Opin Immunol. 2005; 17: 359-365
        • Niyonsaba F.
        • Ogawa H.
        Protective roles of the skin against infection: implication of naturally occurring human antimicrobial agents β-defensins, cathelicidin LL-37 and lysozime.
        J Dermatol Sci. 2005; 40: 157-168
        • Niyonsaba F.
        • Nagaoka I.
        • Ogawa H.
        Human defensis and cathelicidins in the skin: beyond direct antimicrobial properties.
        Crit Rev Immunol. 2006; 26: 545-576
        • Izadpanah A.
        • Gallo R.L.
        Antimicrobial peptides.
        J Am Acad Dermatol. 2005; 52: 381-390
        • Radek K.A.
        • Lopez-Garcia B.
        • Hupe M.
        • et al.
        The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury.
        J Invest Dermatol. 2008; 128: 1525-1534
        • Braff M.H.
        • Bardan A.
        • Nizet V.
        • Gallo R.L.
        Cutaneous defense mechanisms by antimicrobial peptides.
        J Invest Dermatol. 2005; 125: 9-13
        • Harder J.
        • Bartels J.
        • Christophers E.
        • Schroder J.M.
        Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic.
        J Biol Chem. 2001; 276: 5707-5713
        • Fang X.M.
        • Shu Q.
        • Chen Q.X.
        • et al.
        Differential expression of alpha- and beta-defensins in human peripheral blood.
        Eur J Clin Invest. 2003; 33: 82-87
        • Liu L.
        • Roberts A.A.
        • Ganz T.
        By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide.
        J Immunol. 2003; 170: 575-580
        • Oren A.
        • Ganz T.
        • Liu L.
        • Meerloo T.
        In human epidermis, beta-defensin 2 is packaged in lamellar bodies.
        Exp Mol Pathol. 2003; 74: 180-182
        • Schutte B.C.
        • Mitros J.P.
        • Bartlett J.A.
        • et al.
        Discovery of five conserved β-defensin gene clusters using a computational search strategy.
        Proc Natl Acad Sci U S A. 2002; 99: 2129-2133
        • Yang D.
        • Chertov O.
        • Bykovskaia S.N.
        • et al.
        β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6.
        Science. 1999; 286: 525-528