Advertisement
Research Article| Volume 27, ISSUE 2, P217-224, March 2009

Ascorbigen: chemistry, occurrence, and biologic properties

      Abstract

      Ascorbigen (ABG) belongs to the glucosinolate family and occurs mainly in Brassica vegetables. It is formed by its precursor glucobrassicin. Glucobrassicin is enzymatically hydrolyzed to indole-3-carbinol, which in turn reacts with l-ascorbic acid to ABG. The degradation of glucobrassicin is induced by plant tissue disruption. The ABG formation depends on pH and temperature. The degradation of ABG in acidic medium causes a release of l-ascorbic acid and a formation of methylideneindolenine; in more alkaline medium, the degradation of ABG causes the formation of 1-deoxy-1-(3-indolyl)-α-l-sorbopyranose and 1-deoxy-1-(3-indolyl)-α-l-tagatopyranose. ABG may partly mediate the known anticarcinogenic effect of diets rich in Brassicacae. Furthermore, ABG is able to induce phase I and II enzymes that are centrally involved in the detoxification of xenobiotics. Cosmeceuticals containing ABG as an active principle are becoming increasingly popular, although the underlying cellular and molecular mechanisms regarding its potential antiaging and ultraviolet-protective properties have not been fully established.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benito E.
        • Obrador A.
        • Stiggelbout A.
        • et al.
        A population-based case-control study of colorectal cancer in Majorca. I. Dietary factors.
        Int J Cancer. 1990; 45: 69-76
        • Chyou P.H.
        • Nomura A.M.
        • Hankin J.H.
        • Stemmermann G.N.
        A case-cohort study of diet and stomach cancer.
        Cancer Res. 1990; 50: 7501-7504
        • Bradlow H.L.
        • Michnovicz J.
        • Telang N.T.
        • Osborne M.P.
        Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice.
        Carcinogenesis. 1991; 12: 1571-1574
        • Grubbs C.J.
        • Steele V.E.
        • Casebolt T.
        • et al.
        Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinol.
        Anticancer Res. 1995; 15: 709-716
        • Bonnesen C.
        • Eggleston I.M.
        • Hayes J.D.
        Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines.
        Cancer Res. 2001; 61: 6120-6130
        • Verhoeven D.T.
        • Verhagen H.
        • Goldbohm R.A.
        • van den Brandt P.A.
        • van Poppel G.
        A review of mechanisms underlying anticarcinogenicity by Brassica vegetables.
        Chem Biol Interact. 1997; 103: 79-129
        • Sorensen H.
        Glucosinolates: structure-properties-function.
        in: Shahidi F. Canola and rapeseed production, chemistry, nutrition and processing technology. Van R. Nostrand, New York1990: 149-172
        • Svirbely J.
        • Szent-Györgyi A.
        The chemical nature of vitamin C.
        Biochem J. 1932; 26: 865-870
        • Ahmad B.
        Observations on the chemical method for the estimation of Vitamin C.
        Biochem J. 1935; 29: 275-281
        • McHenry E.W.
        • Graham M.
        Observations on the estimation of ascorbic acid by titration.
        Biochem J. 1935; 29: 2013-2019
        • Pal J.C.
        • Guha B.C.
        Combined ascorbic acid in plant food stuffs.
        J Indian Chem Soc. 1939; 16: 871-872
        • Sen Gupta P.N.
        • Guha B.C.
        Estimation of total vitamin C in food stuffs.
        J Indian Chem Soc. 1937; 14: 95-102
        • Prochazka Z.
        • Sanda V.
        • Sorm F.
        Isolation of pure ascorbigen.
        Coll Czech Chem Commun. 1957; 22: 333-334
        • Kiss G.
        • Neukom H.
        Über die struktur des ascorbigens.
        Helv Chim Acta. 1966; 49: 989-992
        • Feldheim W.
        Research on the determination of the antiscorbutic activity of ascorbigen.
        Int Z Vitaminforsch. 1961; 31: 297-303
        • Feldheim W.
        • Prochazka Z.
        On the antiscorbutic effectiveness of synthetic ascorbigen. Studies on ascorbigen metabolism in man and guinea pigs.
        Int Z Vitaminforsch. 1962; 32: 251-257
        • Hrncirik K.
        • Valusek J.
        • Velisek J.
        A study on the formation and stability of ascorbigen in an aqueous system.
        Food Chem. 1998; 63: 349-355
        • McDanell R.
        • McLean A.E.
        • Hanley A.B.
        • Heaney R.K.
        • Fenwick G.R.
        Differential induction of mixed-function oxidase (MFO) activity in rat liver and intestine by diets containing processed cabbage: correlation with cabbage levels of glucosinolates and glucosinolate hydrolysis products.
        Food Chem Toxicol. 1987; 25: 363-368
        • Virtanen A.I.
        Studies on organic sulphur compounds and other labile substances in plants.
        Phytochemistry. 1965; 4: 207-228
        • Searle L.M.
        • Chamberlain K.
        • Butcher D.N.
        Preliminary studies on the effects of copper, iron, manganese ions on the degradation of 3-indolyl methyl-glucosinolate (a constituent of Brassica spp.) by myrosinase.
        J Sci Food Agric. 1984; 35: 745-748
        • Bradfield C.A.
        • Bjeldanes L.F.
        Structure-activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolism.
        J Toxicol Environ Health. 1987; 21: 311-323
        • Latxague L.
        • Gardrat C.
        • Coustille J.L.
        • Viaud M.C.
        • Rollin P.
        Identification of enzymatic degradation products from synthesized glucobrassicin by gas chromatography-mass spectrometry.
        J Chromatogr. 1991; 586: 166-170
        • Gmelin R.
        • Virtanen A.I.
        Glucobrassicin, the precursor of the thiocyanate ion, 3-indolylacetonitrile, and ascorbigen in Brassica oleracea (and related) species.
        Ann Acad Sci Fenn, Ser A II Chem. 1961; 107: 1-25
        • Kutacek M.
        • Prochazka Z.
        • Veres K.
        Biogenesis of glucobrassicin, the in vitro precursor of ascorbigen.
        Nature. 1962; 194: 393-394
        • Bjeldanes L.F.
        • Kim J.Y.
        • Grose K.R.
        • Bartholomew J.C.
        • Bradfield C.A.
        Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin.
        Proc Natl Acad Sci U S A. 1991; 88: 9543-9547
        • De Kruif C.A.
        • Marsman J.W.
        • Venekamp J.C.
        • et al.
        Structure elucidation of acid reaction products of indole-3-carbinol: detection in vivo and enzyme induction in vitro.
        Chem Biol Interact. 1991; 80: 303-315
        • Grose K.R.
        • Bjeldanes L.F.
        Oligomerization of indole-3-carbinol in aqueous acid.
        Chem Res Toxicol. 1992; 5: 188-193
        • Aleksandrova L.G.
        • Korolev A.M.
        • Preobrazhenskaya M.N.
        Study of natural ascorbigen and related compounds by HPLC.
        Food Chem. 1992; 45: 61-69
        • Preobrazhenskaya M.N.
        • Korolev A.M.
        • Lazhko E.I.
        • Aleksandrova L.G.
        • Bergman J.
        • Lindström J.-O.
        Ascorbigen as a precursor of 5,11-dihydroindolo 3,2-b]carbazole.
        Food Chem. 1993; 48: 57-62
        • Preobrazhenskaya M.N.
        • Lazhko E.I.
        • Korolev A.M.
        Reaction of (indol-3-yl)ethanediol with L-ascorbic acid.
        Tetrahedron Asymmetry. 1996; 7: 641-644
        • Reznikova M.I.
        • Korolev A.M.
        • Bodyagin D.A.
        • Preobrazhenskaya M.N.
        Transformations of ascorbigen in vivo into ascorbigen acid and 1-deoxy-1-(indol-3-yl)ketoses.
        Food Chem. 2000; 71: 469-474
        • Hrncirik K.
        • Valusek J.
        • Velisek J.
        Investigation of ascorbigen as a breakdown product of glucobrassicin autolysis in Brassica vegetables.
        Eur Food Res Technol. 2001; 212: 576-581
        • Ciska E.
        • Pathak D.R.
        Glucosinolate derivatives in stored fermented cabbage.
        J Agric Food Chem. 2004; 52: 7938-7943
        • Sepkovic D.W.
        • Bradlow H.L.
        • Michnovicz J.
        • Murtezani S.
        • Levy I.
        • Osborne M.P.
        Catechol estrogen production in rat microsomes after treatment with indole-3-carbinol, ascorbigen, or beta-naphthoflavone: a comparison of stable isotope dilution gas chromatography-mass spectrometry and radiometric methods.
        Steroids. 1994; 59: 318-323
        • Stephensen P.U.
        • Bonnesen C.
        • Bjeldanes L.F.
        • Vang O.
        Modulation of cytochrome P4501A1 activity by ascorbigen in murine hepatoma cells.
        Biochem Pharmacol. 1999; 58: 1145-1153
        • Gillner M.
        • Bergman J.
        • Cambillau C.
        • Fernström B.
        • Gustafsson J.-A.
        Interactions of indoles with specific binding sites for 2,3,7,8-Tetrachlorodibenzo-p-dioxin in rat liver.
        Mol Pharmacol. 1985; 28: 357-363
        • Kravchenko L.V.
        • Avren'eva L.I.
        • Guseva G.V.
        • Posdnyakov A.L.
        • Tutel'yan V.A.
        Effect of nutritional indoles on activity of xenobiotic metabolism enzymes and T-2 toxicity in rats.
        Bull Exp Biol Med. 2001; 131: 544-547
        • Preobrazhenskaya M.N.
        • Bukhman V.M.
        • Korolev A.M.
        • Efimov S.A.
        Ascorbigen and other indole-derived compounds from Brassica vegetables and their analogs as anticarcinogenic and immunomodulating agents.
        Pharmacol Ther. 1993; 60: 301-313
        • Musk S.R.
        • Preobrazhenskaya M.N.
        • Belitsky G.A.
        • et al.
        The clastogenic and mutagenic effects of ascorbigen and 1′-methylascorbigen.
        Mutat Res. 1994; 323: 69-74
        • Farris P.K.
        Topical vitamin C: a useful agent for treating photoaging and other dermatologic conditions.
        Dermatol Surg. 2005; 31: 814-818
        • Dinkova-Kostova A.T.
        • Jenkins S.N.
        • Fahey J.W.
        • et al.
        Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts.
        Cancer Lett. 2006; 240: 243-252
        • Lu Y.P.
        • Lou Y.R.
        • Xie J.G.
        • et al.
        Topical applications of caffeine or (-)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice.
        Proc Natl Acad Sci U S A. 2002; 99: 12455-12460
        • Zhu M.
        • Zhang Y.
        • Cooper S.
        • Sikorski E.
        • Rohwer J.
        • Bowden G.T.
        Phase II enzyme inducer, sulforaphane, inhibits UVB-induced AP-1 activation in human keratinocytes by a novel mechanism.
        Mol Carcinog. 2004; 41: 179-186
        • Enomoto A.
        • Itoh K.
        • Nagayoshi E.
        • et al.
        High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes.
        Toxicol Sci. 2001; 59: 169-177
        • Xu C.
        • Huang M.T.
        • Shen G.
        • et al.
        Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2.
        Cancer Res. 2006; 66: 8293-8296
        • Srivastava B.
        • Shukla Y.
        Antitumour promoting activity of indole-3-carbinol in mouse skin carcinogenesis.
        Cancer Lett. 1998; 134: 91-95
        • Cope R.B.
        • Loehr C.
        • Dashwood R.
        • Kerkvliet N.I.
        Ultraviolet radiation-induced non-melanoma skin cancer in the Crl:SKH1:hr-BR hairless mouse: augmentation of tumor multiplicity by chlorophyllin and protection by indole-3-carbinol.
        Photochem Photobiol Sci. 2006; 5: 499-507
        • Stephensen P.U.
        • Bonnesen C.
        • Schaldach C.
        • Andersen O.
        • Bjeldanes L.F.
        • Vang O.
        N-methoxyindole-3-carbinol is a more efficient inducer of cytochrome P-450 1A1 in cultured cells than indol-3-carbinol.
        Nutr Cancer. 2000; 36: 112-121