Advertisement
Research Article| Volume 27, ISSUE 2, P195-201, March 2009

Lutein and zeaxanthin in eye and skin health

      Abstract

      Less than 20 of the hundreds of carotenoids found in nature are found in the human body. These carotenoids are present in the body from the foods or dietary supplements that humans consume. The body does not synthesize them. Among the carotenoids present in the body, only lutein and its coexistent isomer, zeaxanthin, are found in that portion of the eye where light is focused by the lens, namely, the macula lutea. Numerous studies have shown that lutein and zeaxanthin may provide significant protection against the potential damage caused by light striking this portion of the retina. In the eye, lutein and zeaxanthin have been shown to filter high-energy wavelengths of visible light and act as antioxidants to protect against the formation of reactive oxygen species and subsequent free radicals. Human studies have demonstrated that lutein and zeaxanthin are present in the skin, and animal studies have provided evidence of significant efficacy against light-induced skin damage, especially the ultraviolet wavelengths. Little was known about the protective effects of these carotenoids in human skin until recently. This article reviews the scientific literature pertaining to the effects that lutein and zeaxanthin exhibit in the human eye and skin.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Szabolcs J.
        Plant carotenoids in carotenoids: chemistry and biology.
        in: Krinsky N.I. Mathews-Roth M.M. Taylor R.F. Plenum Press, New York1990: 39-58
        • Goulinet S.
        • Chapman M.J.
        Plasma LDL and HDL subspecies are heterogenous in particle content of tocopherols and oxygenated and hydrocarbon carotenoids. Relevance to oxidative resistance and atherogenesis.
        Arterioscler Thromb Vasc Biol. 1997; 17: 786-796
        • Sujak A.
        • Gabrielska J.
        • Grudzinski W.
        • Borc R.
        • Mazurek P.
        • Gruszecki W.
        Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects.
        Arch Biochem Biophys. 1999; 371: 301-307
        • Sujak A.
        • Okulski W.
        • Gruszecki W.
        Organisation of xanthophyll pigments lutein and zeaxanthin in lipid membranes formed with dipalmitoylphosphatidylcholine.
        Biochim Biophys Acta. 2000; 1509: 255-263
        • Khachik F.
        • Nir Z.
        • Ausich R.
        • Steck A.
        • Pfander H.
        Distribution of carotenoids in fruits and vegetables for the selection of appropriate chemopreventative factors.
        Chem Cancer Prev. 1995; : 204-208
        • Sommerburg O.
        • Keunen J.
        • Bird A.
        • van Kuijk F.
        Fruits and vegetables that are sources of lutein and zeaxanthin: the macular pigment in human eyes.
        Br J Ophthalmol. 1998; 82: 907-910
        • Chung H.
        • Rasmussen H.
        • Johnson E.
        Lutein bioavailability is higher from lutein-enriched eggs than form supplements and spinach in men.
        J Nutr. 2004; 134: 1887-1893
        • Khachik F.
        • Beecher G.
        • Goli M.
        • Lusby W.
        Separation and quantitation of carotenoids in foods.
        Methods Enzymol. 1992; 213: 347-359
        • Khachik F.
        • Beecher G.
        • Goli M.
        • Lusby W.
        • Smith Jr, J.
        Separation and identification of carotenoids and their oxidation products in the extracts of human plasma.
        Anal Chem. 1992; 64: 2111-2122
        • Cooper D.
        • Eldridge A.
        • Peters J.
        Dietary carotenoids and certain cancers, heart disease, and age-related macular degeneration: a review of recent research.
        Nutr Rev. 1999; 57: 201-214
        • Guigliano D.
        Dietary antioxidants for cardiovascular prevention.
        Nutr Metab Cardiovasc Dis. 2000; 10: 38-44
        • Goldberg J.
        • Flowerdew G.
        • Smith E.
        • Brody J.
        • Tso M.
        Factors associated with age-related macular degeneration. An analysis of data from the first National Health and Nutritional Examination Survey.
        Am J Epidemiol. 1988; 128: 700-710
        • Eye Disease Case Control Study Group
        Antioxidant status and neovascular age-related macular degeneration.
        Arch Ophthalmol. 1993; 111: 104-109
        • Jaques P.
        The potential role of preventive effects of vitamins for cataract and age-related macular degeneration.
        Int J Vitam Nutr Res. 1999; 69: 198-205
        • Moeller S.
        • Jacques P.
        • Blumberg J.
        The potential role of dietary xanthophylls in cataract and age-related macular degeneration.
        J Am Coll Nutr. 2000; 19: 522S-527S
        • Slattery M.
        • Benson J.
        • Curtin K.
        • Ma K.
        • Schaeffer D.
        • Potter J.
        Carotenoids and colon cancer.
        Am J Clin Nutr. 2000; 71: 575-582
        • Ziegler R.
        • Mayne S.
        • Swanson C.
        Nutrition and lung cancer.
        Cancer Causes Control. 1996; 7: 157-177
        • Kritchevsky S.
        Beta-carotene, carotenoids, and the prevention of coronary heart disease.
        J Nutr. 1999; 129: 5-8
        • DelCourt C.
        • Carriere I.
        • Delage M.
        • Barberger-Gateau P.
        • Schalch W.
        Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataracts: the POLA study.
        Invest Ophthalmol Vis Sci. 2006; 47: 2329-2335
        • Able Jr, R.
        The eye care revolution: prevent and reverse vision problems. Kensington Books, New York1999: 41-46
        • Ham Jr, W.
        • Mueller H.
        • Sliney D.
        Retinal sensitivity to damage from short wavelengths of light.
        Nature. 1976; 260: 153-155
        • Beatty S.
        • Boulton M.
        • Henson D.
        • Koh H.
        • Murray I.
        Macular pigment and age-related macular degeneration.
        Br J Ophthalmol. 1999; 83: 867-877
        • Beatty S.
        • Nolan J.
        • Kavanagh H.
        • O'Donovan
        Macular pigment optical density and its relationship with serum and dietary levels of lutein and zeaxanthin.
        Arch Biochem Biophys. 2004; 430: 70-76
        • Koh H.
        • Murray I.
        • Nolan D.
        • Carden D.
        • Feather J.
        • Beatty S.
        Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: a pilot study.
        Exp Eye Res. 2004; 79: 21-27
        • Krinsky N.
        • Landrum J.
        • Bone R.
        Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye.
        Annu Rev Nutr. 2003; 23: 171-201
        • Ruffolo Jr, J.
        • Ham Jr, T.
        • Mueller H.
        • Millen J.
        Photochemical lesions in the primate retina under controlled conditions of elevated blood oxygen.
        Invest Ophthalmol Vis Sci. 1984; 25: 893-898
        • Handelman G.
        • Dratz E.
        • Reay C.
        • van Kuijk J.
        Carotenoids in the human macula and whole retina.
        Invest Ophthalmol Vis Sci. 1988; 29: 850-855
        • Bone R.
        • Landrum J.
        • Tarsis S.
        Preliminary identification of the human macular pigment.
        Vis Res. 1985; 25: 1531-1535
        • Snodderly D.
        • Handelman G.
        • Adler A.
        Distribution of individual macular pigment carotenoids in central retina of macaque and squirrel monkeys.
        Invest Ophthalmol Vis Sci. 1991; 32: 268-279
        • Bone R.
        • Landrum J.
        Distribution of macular pigment components, zeaxanthin and lutein, in human retina.
        Methods Enzymol. 1991; 213: 360-366
        • Landrum J.
        • Bone R.
        Lutein, zeaxanthin, and the macular pigment.
        Arch Biochem Biophys. 2001; 385: 28-40
        • Bone R.
        • Landrum J.
        • Friedes L.
        • et al.
        Distribution of lutein and zeaxanthin stereoisomers in the human retina.
        Exp Eye Res. 1997; 64: 211-218
        • Mares-Perlman J.
        • Millen A.
        • Ficek T.
        • Hankinson S.
        The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic diseases. Overview.
        J Nutr. 2002; 132: 518S-524S
        • Klaver C.
        • Wolfs R.
        • Vingerling J.
        • Hofman J.
        • de Jong P.
        Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study.
        Arch Ophthalmol. 1998; 116: 653-658
        • Beatty S.
        • Koh H.
        • Phil M.
        • Henson D.
        • Boulton M.
        The role of oxidative stress in the pathogenesis of age-related macular degeneration.
        Surv Ophthalmol. 2000; 45: 115-134
        • Fine S.
        • Berger J.
        • Maguire M.
        • Ho A.
        Age-related macular degeneration.
        N Engl J Med. 2000; 342: 483-492
        • Johnson E.
        Obesity, lutein metabolism, and age-related macular degeneration: a web of connections.
        Nutr Rev. 2005; 63: 9-15
        • Klein R.
        • Zeiss C.
        • Chew E.
        • et al.
        Complement factor H polymorphism in age-related macular degeneration.
        Science. 2005; 308: 385-389
        • Christen W.
        Antioxidant vitamins and age-related eye diseases.
        Proc Assoc Am Physicians. 1999; 111: 16-21
        • Cai J.
        • Nelson K.
        • Wu M.
        • Sternberg P.
        • Jones D.
        Oxidative damage and protection of RPE.
        Prog Retin Eye Res. 2000; 19: 205-221
        • Seddon J.
        • Anani A.
        • Sperduto R.
        • et al.
        Dietary carotenoids, vitamin A, C, E and advanced age-related macular degeneration. Eye Disease Case Controlled Study Group.
        JAMA. 1994; 272 ([published erratum appears in JAMA 273 (1995) 6221]): 1413-1420
        • Moeller S.
        • Parekh N.
        • Tinker L.
        • et al.
        Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-related Eye Disease Study (CAREDS): ancillary study of the Women's Health Initiative.
        Arch Ophthalmol. 2006; 124: 1151-1162
        • Bone R.
        • Landrum J.
        • Mayne S.
        • Gomez C.
        • Tibor S.
        • Twaroska E.
        Macular pigment in donor eyes with and without AMD: a case-controlled study.
        Invest Ophthalmol Vis Sci. 2001; 42: 235-240
        • Hammond Jr, B.
        • Johnson E.
        • Russell R.
        • et al.
        Dietary modification of human macular pigment density.
        Invest Ophthalmol Vis Sci. 2000; 41: 3322-3326
        • Johnson E.
        • Hammond Jr, B.
        • Yeum K.
        • et al.
        Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density.
        Am J Clin Nutr. 2000; 71: 1555-1562
        • Berendschot T.
        • Goldbohm R.
        • Klopping W.
        • et al.
        Influence of lutein supplementation on macular pigment, assessed with two objective techniques.
        Invest Ophthalmol Vis Sci. 2000; 41: 3322-3326
        • Landrum J.
        • Bone R.
        • Joa H.
        • Kilburn M.
        • Moore L.
        • Sprague K.
        A one year study of the macular pigment: the effect of 140 days of a lutein supplement.
        Exp Eye Res. 1997; 65: 57-62
        • Landrum J.
        Serum and macular pigment response to 2.4 mg dosage of lutein.
        ARVO. 2000; 2000: 41
        • Nolan J.
        • Stack J.
        • Mellerio J.
        • et al.
        Monthly consistency of macular pigment optical density and serum concentrations of lutein and zeaxanthin.
        Curr Eye Res. 2006; 31: 199-213
        • Richer S.
        ARMD–pilot (case series) environmental intervention data.
        J Am Optom Assoc. 1999; 70: 24-36
        • Massacesi A.
        • Faletra R.
        • Gerosa G.
        • Staurenghi G.
        • Orzalesi N.
        The effect of oral supplementation of macular carotenoids (lutein and zeaxanthin) on the prevention of age-related macular degeneration: an 18-month follow-up study.
        ARVO. 2001; 42: S234
        • Richer S.
        • Stiles W.
        • Statkute L.
        • et al.
        Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atopic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial).
        Optometry. 2004; 75: 216-230
        • Kvansakul J.
        • Rodriguez-Carmona M.
        • Edgar D.
        • et al.
        Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance.
        Ophthalmic Physiol Opt. 2006; 26: 362-371
        • Bahrami H.
        • Melia M.
        • Dagnelie G.
        Lutein supplementation in retinitis pigmentosa: PC-based vision assessment in a randomized double-masked, placebo-controlled clinical trial [NCT00029289].
        BMC Ophthalmol. 2006; 6: 23
        • Kochevar I.
        • Pathak M.
        • Parrish J.
        Photophysics, photochemistry and photobiology.
        in: Freedberg I.M. Eisen A.Z. Wolff K. Fitzpatrick's dermatology in general medicine. 5th ed. McGraw-Hill, New York1999: 220-229
        • Greenstock C.
        Radiation-induced aging an induction and promotion of biological damage in free radicals, aging, and degenerative diseases.
        in: Johnson J.E. Walford R. AR Liss Inc, New York1986: 197-219
        • Fuchs J.
        • Mehlhorn R.
        • Packer L.
        Free radical reduction mechanisms in mouse epidermis skin homogenates.
        J Invest Dermatol. 1989; 93: 633-640
        • Fuchs J.
        • Huflejt M.
        • Rothfuss L.
        • Wilson D.
        • Carcamo G.
        • Packer L.
        Impairment of enzymatic and nonenzymatic antioxidants in skin by UVB irradiation.
        J Invest Dermatol. 1989; 93: 769-773
        • Fuchs J.
        • Huflejt M.
        • Rothfuss L.
        • Wilson D.
        • Carcamo G.
        • Packer L.
        Acute effects of near ultraviolet and visible light on cutaneous antioxidant defense system.
        Photochem Photobiol. 1989; 50: 739-744
        • Shindo Y.
        • Witt E.
        • Han D.
        • Packer L.
        Dose-response effects of acute ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine epidermis and dermis.
        J Invest Dermatol. 1994; 102: 470-475
        • Jurkiewicz-Lange B.
        • Buettner G.
        Electron paramagnetic resonance detection of free radicals in UV-irradiated human and mouse skin.
        in: Thiele J. Elsner P. Oxidants and antioxidants in cutaneous biology: current problems in dermatology. vol. 29. Karger, Basel2001: 18-25
        • Sayre R.
        • Kollias N.
        • Roberts R.
        • Baqer A.
        • Sadiq I.
        Physical sunscreens sunscreens sunscreens sunscreens.
        J Soc Cosmet Chem. 1990; 41: 103-109
        • Wingerath T.
        • Seis H.
        • Stahl W.
        Xanthophyll esters in human skin.
        Arch Biochem Biophys. 1998; 355: 271-274
        • Hata T.
        • Scholz T.
        • Ermakov I.
        • et al.
        Non-invasive Raman spectroscopic detection of carotenoids in human skin.
        J Invest Dermatol. 2000; 115: 441-448
        • González S.
        • Astner S.
        • Wu A.
        • Goukassian D.
        • Pathak M.
        Dietary lutein/zeaxanthin decreases ultraviolet B-induced epidermal hyperproliferation and acute inflammation in hairless mice.
        J Invest Dermatol. 2003; 121: 399-405
        • Lee E.
        • Faulhaber D.
        • Hanson K.
        • et al.
        Dietary lutein reduces ultraviolet radiation-induced inflammation and immunosuppression.
        J Invest Dermatol. 2004; 122: 510-517
        • Morganti P.
        • Bruno C.
        • Guarneri F.
        • Cardillo A.
        • Del Ciotto P.
        • Valenzano F.
        Role of topical and nutritional supplements to modify the oxidative stress.
        Int J Cosmet Sci. 2002; 24: 331-339
        • Rice-Evans C.
        • Sampson J.
        • Bramley P.
        • Holloway D.
        Why do we expect carotenoids to be antioxidants in vivo?.
        Free Radic Res. 1997; 26: 381-398
        • Krinsky N.
        Carotenoid protection against oxidation.
        Pure Appl Chem. 1979; 51: 649-660
        • Krinsky N.
        • Deneke S.
        Interaction of oxygen and oxy-radicals with carotenoids.
        J Natl Cancer Inst. 1982; 69: 205-210
        • DiMascio P.
        • Devasagayam T.
        • Kaiser S.
        • Sies H.
        Carotenoids, tocopherols and thiols as biological singlet oxygen quenchers.
        Biochem Soc Trans. 1990; 18: 1054-1056
        • Miki W.
        Biological functions and activities of animal carotenoids.
        Pure Appl Chem. 1991; 63: 141-146
        • Terao J.
        • Nagao A.
        • Park D.-K.
        • Lim B.
        Lipid hydroperoxide assay for antioxidant activity of carotenoids.
        Methods Enzymol. 1992; 213: 454-460
        • Chopra M.
        • Wilson R.
        • Thurnham S.
        Free radical scavenging of lutein in vitro.
        Ann N Y Acad Sci. 1993; 691: 246-249
        • Miller N.
        • Sampson J.
        • Candeias L.
        • Bramley B.
        • Rice-Evans C.
        Antioxidant activities of carotenes and xanthophylls.
        FEBS Lett. 1996; 384: 240-242
        • Black H.
        Radical interception by carotenoids and effects on UV carcinogenesis.
        Nutr Cancer. 1998; 31: 212-217
        • Krinsky N.
        The antioxidant and biological properties of the carotenoids.
        Ann N Y Acad Sci. 1998; 854: 443-447
        • Edge R.
        • Truscott T.
        Carotenoid radicals and the interaction of carotenoids with active oxygen species.
        in: Frank H.A. Young A.J. Britton G. Cogdell R.J. The photochemistry of carotenoids. Kluwer Academic Publishers, The Netherlands1999: 223-234
        • Krinsky N.
        Possible biologic mechanism for a protective role of xanthophylls.
        J Nutr. 2002; 132: 540S-542S
        • Danno K.
        • Horio T.
        • Takigawa M.
        • Imamura S.
        Role of oxygen intermediates in UV-induced epidermal cell injury.
        J Invest Dermatol. 1984; 83: 166-168
        • Steenvoorden D.
        • Beijersbergen van Henegouwen G.
        The use of endogenous antioxidants to improve photoprotection.
        J Photochem Photobiol B: Biology. 1997; 41: 1-10
        • Palombo P.
        • Fabrizi G.
        • Ruocco V.
        • et al.
        New evidence of lutein/zeaxanthin in skin health.
        in: Beyond Beauty Paris Conference, Paris2006 ([Abstract])