Pathophysiology of acute wound healing

      Abstract

      Wound healing is a complex process that can be divided into at least 3 continuous and overlapping processes: an inflammatory reaction, a proliferative process leading to tissue restoration, and, eventually, tissue remodeling. Wound healing processes are strictly regulated by multiple growth factors and cytokines released at the wound site. Although the desirable final result of coordinated healing would be the formation of tissue with a similar structure and comparable functions as with intact skin, regeneration is uncommon (with notable exceptions such as early fetal healing); healing however results in a structurally and functionally satisfactory but not identical outcome. Alterations that disrupt controlled healing processes would extend tissue damage and repair. The pathobiologic states may lead to chronic or nonhealing wounds or excessive fibrosis.
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Clinics in Dermatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kirsner R.S.
        • Eaglstein W.H.
        The wound healing process.
        Dermatol Clin. 1993; 11: 629-640
        • Grinnell F.
        • Billingham R.E.
        • Burgess L.
        Distribution of fibronectin during wound healing in vivo.
        J Invest Dermatol. 1981; 76: 181-189
        • Noli C.
        • Miolo A.
        The mast cell in wound healing.
        Vet Dermatol. 2001; 12: 303-313
        • Simpson D.M.
        • Ross R.
        The neutrophilic leukocyte in wound repair: a study with antineutrophil serum.
        J Clin Invest. 1972; 51: 2009-2023
        • Kunkel S.L.
        • Standiford T.
        • Kasahara K.
        • Strieter R.M.
        Stimulus specific induction of monocyte chemotactic protein–1 (MCP-1) gene expression.
        Adv Exp Med Biol. 1991; 305: 65-71
        • Sherry B.
        • Tekamp-Olson P.
        • Gallegos C.
        • et al.
        Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta.
        J Exp Med. 1988; 168: 2251-2259
        • Postlethwaite A.E.
        • Kang A.H.
        Collagen- and collagen peptide–induced chemotaxis of human blood monocytes.
        J Exp Med. 1976; 143: 1299-1307
        • Lewis J.S.
        • Lee J.A.
        • Underwood J.C.
        • et al.
        Macrophage responses to hypoxia: relevance to disease mechanisms.
        J Leukoc Biol. 1999; 66: 889-900
        • Falanga V.
        Growth factors and wound healing.
        J Dermatol Surg Oncol. 1993; 19: 711-714
        • Sapirstein A.
        • Bonventre J.V.
        Specific physiological roles of cytosolic phospholipase A(2) as defined by gene knockouts.
        Biochim Biophys Acta. 2000; 1488: 139-148
        • Schmidt B.Z.
        • Colten H.R.
        Complement: a critical test of its biological importance.
        Immunol Rev. 2000; 178: 166-176
        • Hosgood G.
        Wound healing. The role of platelet-derived growth factor and transforming growth factor beta.
        Vet Surg. 1993; 22: 490-495
        • Deuel T.F.
        • Senior R.M.
        • Huang J.S.
        • Griffin G.L.
        Chemotaxis of monocytes and neutrophils to platelet-derived growth factor.
        J Clin Invest. 1982; 69: 1046-1049
        • Katz M.H.
        • Alvarez A.F.
        • Kirsner R.S.
        • et al.
        Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth.
        J Am Acad Dermatol. 1991; 25: 1054-1058
        • Scheid A.
        • Wenger R.H.
        • Schaffer L.
        • et al.
        Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor–beta3.
        FASEB J. 2002; 16: 411-413
        • Hell E.
        • Lawrence J.C.
        The initiation of epidermal wound healing in cuts and burns.
        Br J Exp Pathol. 1979; 60: 171-179
        • Sun T.T.
        • Cotsarelis G.
        • Lavker R.M.
        Hair follicular stem cells: the bulge-activation hypothesis.
        J Invest Dermatol. 1991; 96: 77S-78S
        • Grove G.L.
        Age-related differences in healing of superficial skin wounds in humans.
        Arch Dermatol Res. 1982; 272: 381-385
        • Parks W.C.
        Matrix metalloproteinases in repair.
        Wound Repair Regen. 1999; 7: 423-432
        • Laplante A.F.
        • Germain L.
        • Auger F.A.
        • Moulin V.
        Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions.
        FASEB J. 2001; 15: 2377-2389
        • Uitto J.
        • Pulkkinen L.
        • McLean W.H.
        Epidermolysis bullosa: a spectrum of clinical phenotypes explained by molecular heterogeneity.
        Mol Med Today. 1997; 3: 457-465
        • McGowan K.A.
        • Marinkovich M.P.
        Laminins and human disease.
        Microsc Res Tech. 2000; 51: 262-279
        • Nguyen B.P.
        • Ryan M.C.
        • Gil S.G.
        • Carter W.G.
        Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion.
        Curr Opin Cell Biol. 2000; 12: 554-562
        • Miner J.H.
        • Cunningham J.
        • Sanes J.R.
        Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain.
        J Cell Biol. 1998; 143: 1713-1723
        • Li J.
        • Zhou L.
        • Tran H.T.
        • et al.
        Overexpression of laminin-8 in human dermal microvascular endothelial cells promotes angiogenesis-related functions.
        J Invest Dermatol. 2006; 26: 432-440
        • Li J.
        • Tzu J.
        • Chen Y.
        • et al.
        Laminin-10 is crucial for hair morphogenesis.
        EMBO J. 2003; 22: 2400-2410
        • Kurkinen M.
        • Vaheri A.
        • Roberts P.J.
        • Stenman S.
        Sequential appearance of fibronectin and collagen in experimental granulation tissue.
        Lab Invest. 1980; 43: 47-51
        • Woodley D.T.
        • O'Keefe E.J.
        • Prunieras M.
        Cutaneous wound healing: a model for cell-matrix interactions.
        J Am Acad Dermatol. 1985; 12: 420-433
        • Clark R.A.
        Basics of cutaneous wound repair.
        J Dermatol Surg Oncol. 1993; 19: 693-706
        • Welch M.P.
        • Odland G.F.
        • Clark R.A.
        Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction.
        J Cell Biol. 1990; 110: 133-145
        • Pearlstein E.
        Plasma membrane glycoprotein which mediates adhesion of fibroblasts to collagen.
        Nature. 1976; 262: 497-500
        • Gailit J.
        • Xu J.
        • Bueller H.
        • Clark R.A.
        Platelet-derived growth factor and inflammatory cytokines have differential effects on the expression of integrins alpha 1 beta 1 and alpha 5 beta 1 by human dermal fibroblasts in vitro.
        J Cell Physiol. 1996; 169: 281-289
        • Roberts A.B.
        • Sporn M.B.
        Transforming growth factor–beta: potential common mechanisms mediating its effects on embryogenesis, inflammation-repair, and carcinogenesis.
        Int J Rad Appl Instrum B. 1987; 14: 435-439
        • Ross R.
        • Bowen-Pope D.F.
        • Raines E.W.
        Platelet-derived growth factor: its potential roles in wound healing, atherosclerosis, neoplasia, and growth and development.
        Ciba Found Symp. 1985; 116: 98-112
        • Marx M.
        • Perlmutter R.A.
        • Madri J.A.
        Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis.
        J Clin Invest. 1994; 93: 131-139
        • Kalebic T.
        • Garbisa S.
        • Glaser B.
        • Liotta L.A.
        Basement membrane collagen: degradation by migrating endothelial cells.
        Science. 1983; 221: 281-283
        • Folkman J.
        Angiogenesis: initiation and control.
        Ann N Y Acad Sci. 1982; 401: 212-227
        • Remensnyder J.P.
        • Majno G.
        Oxygen gradients in healing wounds.
        Am J Pathol. 1968; 52: 301-323
        • Senger D.R.
        • Claffey K.P.
        • Benes J.E.
        • et al.
        Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins.
        Proc Natl Acad Sci U S A. 1997; 94: 13612-13617
        • Gerber H.P.
        • Dixit V.
        • Ferrara N.
        Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells.
        J Biol Chem. 1998; 273: 13313-13316
        • Detmar M.
        • Brown L.F.
        • Berse B.
        • et al.
        Hypoxia regulates the expression of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) and its receptors in human skin.
        J Invest Dermatol. 1997; 108: 263-268
        • Feng X.
        • Clark R.A.
        • Galanakis D.
        • Tonnesen M.G.
        Fibrin and collagen differentially regulate human dermal microvascular endothelial cell integrins: stabilization of alphav/beta3 mRNA by fibrin1.
        J Invest Dermatol. 1999; 113: 913-919
        • Gonzales M.
        • Weksler B.
        • Tsuruta D.
        • et al.
        Structure and function of a vimentin-associated matrix adhesion in endothelial cells.
        Mol Biol Cell. 2001; 12: 85-100
        • Li J.
        • Zhang Y.P.
        • Kirsner R.S.
        Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix.
        Microsc Res Tech. 2003; 60: 107-114
        • Majno G.
        The story of the myofibroblasts.
        Am J Surg Pathol. 1979; 3: 535-542
        • Darby I.
        • Skalli O.
        • Gabbiani G.
        Alpha–smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing.
        Lab Invest. 1990; 63: 21-29
        • Mudera V.
        • Eastwood M.
        • McFarland C.
        • Brown R.A.
        Evidence for sequential utilization of fibronectin, vitronectin, and collagen during fibroblast-mediated collagen contraction.
        Wound Repair Regen. 2002; 10: 397-408
        • Singer I.I.
        • Kawka D.W.
        • Kazazis D.M.
        • Clark R.A.
        In vivo co-distribution of fibronectin and actin fibers in granulation tissue: immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface.
        J Cell Biol. 1984; 98: 2091-2106
        • Bell E.
        • Ehrlich H.P.
        • Buttle D.J.
        • Nakatsuji T.
        Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness.
        Science. 1981; 211: 1052-1054
        • Giancotti F.G.
        • Ruoslahti E.
        Integrin signaling.
        Science. 1999; 285: 1028-1032
        • Sepp N.T.
        • Li L.J.
        • Lee K.H.
        • et al.
        Basic fibroblast growth factor increases expression of the alpha v beta 3 integrin complex on human microvascular endothelial cells.
        J Invest Dermatol. 1994; 103: 295-299
        • Carter W.G.
        • Kaur P.
        • Gil S.G.
        • et al.
        Distinct functions for integrins alpha 3 beta 1 in focal adhesions and alpha 6 beta 4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes.
        J Cell Biol. 1990; 111: 3141-3154
        • Kim J.P.
        • Zhang K.
        • Chen J.D.
        • et al.
        Mechanism of human keratinocyte migration on fibronectin: unique roles of RGD site and integrins.
        J Cell Physiol. 1992; 151: 443-450
        • Mercurio A.M.
        Lessons from the alpha2 integrin knockout mouse.
        Am J Pathol. 2002; 161: 3-6
        • Booth B.A.
        • Polak K.L.
        • Uitto J.
        Collagen biosynthesis by human skin fibroblasts: I. Optimization of the culture conditions for synthesis of type I and type III procollagens.
        Biochim Biophys Acta. 1980; 607: 145-160
        • Abercrombie M.
        • Flint M.H.
        • James D.W.
        Wound contraction in relation to collagen formation in scorbutic guinea pigs.
        J Embryol Exp Morph. 1956; 4: 167-175
        • Visse R.
        • Nagase H.
        Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry.
        Circ Res. 2003; 92: 827-839
        • Shah M.
        • Foreman D.M.
        • Ferguson M.W.
        Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring.
        J Cell Sci. 1995; 108: 985-1002
        • Loot M.A.
        • Kenter S.B.
        • Au F.L.
        • et al.
        Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls.
        Eur J Cell Biol. 2002; 81: 153-160
        • Stojadinovic O.
        • Brem H.
        • Vouthounis C.
        • et al.
        Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing.
        Am J Pathol. 2005; 167: 59-69
        • Waikel R.L.
        • Kawachi Y.
        • Waikel P.A.
        • Wang X.J.
        • Roop D.R.
        Deregulated expression of c-Myc depletes epidermal stem cells.
        Nat Genet. 2001; 28: 165-168
        • Hasan A.
        • Murata H.
        • Falabella A.
        • et al.
        Dermal fibroblasts from venous ulcers are unresponsive to the action of transforming growth factor–beta 1.
        J Dermatol Sci. 1997; 16: 59-66
        • Kim B.C.
        • Kim H.T.
        • Park S.H.
        • et al.
        Fibroblasts from chronic wounds show altered TGF-beta–signaling and decreased TGF-beta type II receptor expression.
        J Cell Physiol. 2003; 195: 331-336